
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PRE-PRINT) 1

SeamlessGAN: Self-Supervised Synthesis of
Tileable Texture Maps

Carlos Rodriguez-Pardo, Elena Garces

Abstract—Real-time graphics applications require high-quality textured materials to convey realism in virtual environments. Generating
these textures is challenging as they need to be visually realistic, seamlessly tileable, and have a small impact on the memory
consumption of the application. For this reason, they are often created manually by skilled artists. In this work, we present SeamlessGAN,
a method capable of automatically generating tileable texture maps from a single input exemplar. In contrast to most existing methods,
focused solely on solving the synthesis problem, our work tackles both problems, synthesis and tileability, simultaneously. Our key idea is
to realize that tiling a latent space within a generative network trained using adversarial expansion techniques produces outputs with
continuity at the seam intersection that can then be turned into tileable images by cropping the central area. Since not every value of the
latent space is valid to produce high-quality outputs, we leverage the discriminator as a perceptual error metric capable of identifying
artifact-free textures during a sampling process. Further, in contrast to previous work on deep texture synthesis, our model is designed
and optimized to work with multi-layered texture representations, enabling textures composed of multiple maps such as albedo, normals,
etc. We extensively test our design choices for the network architecture, loss function, and sampling parameters. We show qualitatively
and quantitatively that our approach outperforms previous methods and works for textures of different types.

Index Terms—Artificial intelligence, Artificial neural network, Machine vision, Image texture, Graphics, Computational photography

✦

1 INTRODUCTION

R EALISTIC and high-quality textures are important elements to
convey realism in virtual environments. These can be proce-

durally generated [1], [2], [3], [4], [5], [6], [7], captured [8], [9]
or synthesized from real images [10], [11], [12], [13]. Frequently,
textures are used to efficiently reproduce elements with repetitive
patterns (for example, facades, surfaces, or materials) by means of
spatially concatenating –or tiling– multiple copies of themselves.
Creating tileable textures is a very challenging problem, as it
requires a semantic understanding of the repetitive elements, often
at multiple scales. For this reason, such a process is frequently
done manually by artists in 3D digitization pipelines.
Recent advances in Convolutional Neural Networks (CNNs) and
Generative Adversarial Networks (GANs) have been applied to
texture synthesis problems [12], [14], [15], [16], [17], [18], [19]
showing unprecedented levels of realism and quality, however, the
output of these methods is not tileable. Despite recent methods [13],
[16], [20], [21], [22], [23] addressing the problem of tileable texture
synthesis, we show that they either assume a particular level of
regularity or the generated textures lose a significant amount of
visual fidelity with respect to the input exemplars. Further, most
of these methods have only focused on synthesizing single images.
Rendering realistic materials requires more information about their
optical properties beyond what represents a single RGB pixel. To
this end, it is common to use spatially-varying BRDFs [24], which
are optical appearance models parameterized by stacks of images,
each one representing a different property, such as albedo, normals,
or transparency. As the number of methods that generate texture

• Carlos Rodriguez - Pardo is with SEDDI (28007, Madrid, Spain) and with
Universidad Carlos III de Madrid (28005, Madrid, Spain).
E-mail: carlos.rodriguezpardo.jimenez@gmail.com

• Elena Garces is with SEDDI (28007, Madrid, Spain) and with Universidad
Rey Juan Carlos (28933, Madrid, Spain)
E-mail: elena.garces@seddi.com

Original

Generated by 
our method

Crop of the central area after 2x2 tiling

Fig. 1: Naı̈vely tiling the original texture causes discontinuities
at the seam intersections as shown in the top row. Our method
automatically generates a tileable texture stack from an input
exemplar which double the size of the input.

stacks from physical samples grows [24], [25], [26] so does the
need to turn them into tileable texture stacks.
In this work, we propose a deep generative model, SeamlessGAN,
capable of synthesizing tileable texture stacks from inputs of
arbitrary content. In contrast to Wang Tiles [27], by which a
single large texture region is created by concatenating multiple
different tiles with matching borders, we aim to automatically
obtain a seamless single-tile, which allows for reduced memory
consumption and enhanced usability in casual scenarios when
the user might lack the necessary artistic skills. Our key idea is
to realize that tiling a latent space within a generative network
produces outputs with continuity at the seam intersection [14],
which can then be turned into tileable images by cropping the
central area. Since not every value of the latent space is valid to
produce high-quality outputs, we follow a double strategy: First,
we train the generative network using an adversarial expansion
technique [12], which provides a latent encoding of the input
texture, which can then be decoded into high-quality outputs that



2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PRE-PRINT)

double the spatial extent of the input. Second, we use the trained
discriminator as a local quality metric in a sampling algorithm.
This allows us to find the input of the generative process that
produces tileable textures similar to the original, as well as multiple
candidates per input exemplar. As opposed to previous work, which
focused on maximizing stationarity [13] and thus might remove
important high-level texture features in regular or near-regular
textures, our method is focused on maximizing tileability while
preserving the original texture as intact as possible, in terms of
its stylistic and semantic properties. To allow for the synthesis of
stacks of textures, we propose a neural architecture composed of
various decoder networks. Despite not explicitly imposing inter-
map consistency, we show that it is implicitly guaranteed by how
the generative network is trained. Without losing generality, we
show texture stacks synthesis of two maps: an albedo and a normal
map. We demonstrate that our method outperforms state-of-the-
art solutions on tileable texture synthesis of single images and
show several examples for synthesizing tileable texture stacks. We
validate our design choices through several ablations studies and
off-the-shelf perceptual quality metrics.

2 RELATED WORK

We review the texture synthesis methods most closely related to our
work. For a more comprehensive review, please refer to the surveys
in [28], [29]. We will also mention other related work regarding
tileable texture synthesis, and deep internal learning.

2.1 Texture Synthesis
Traditionally, non-parametric texture synthesis algorithms
worked by ensuring that every patch in the output textures
approximates a patch in the input texture. Earlier methods included
image quilting [10], [30], GraphCuts [31], genetic algorithms [32],
and optimization [11], [33]. More recent approaches use variations
of PatchMatch [34], [35] as a way of finding correspondences
between generated and input images [36], [37], [38].
Despite those methods showing high-quality results for textures of
different characteristics, recent work on deep parametric texture
synthesis show better generality and scalability, requiring less
manual input. Our approach belongs to the category of Parametric
texture synthesis. These methods learn statistics from the example
textures, which can then be used for the generation of new images
that match those statistics. While traditional methods used hand-
crafted features [39], [40], recent parametric methods rely on
deep neural networks as their parameterization. Activations within
latent spaces in pre-trained CNNs have shown to capture relevant
statistics of the style and texture of images [41], [42], [43], [44],
[45]. Textures can be synthesized through this approach by gradient-
descent optimization [46], [47] or by training a neural network
that learns those features [23], [48]. Finding generic patterns
that precisely describe the example textures is one of the main
challenges in parametric texture synthesis. Features that describe
textured images in a generic way are hard to find and they typically
require hand-tuning. Generative Adversarial Networks (GANs),
which have shown remarkable capabilities in image generation in
multiple domains [49], [50], [51], can learn those features from data.
Specifically, in texture synthesis, they have proven successful at
generating new samples of textures from a single input image [12]
or from a dataset of images [14], [15], [16], [17], [18]. We build
upon the method of Zhou et al. [12] which shows good performance
on the synthesis of non-stationary single image textures, and extend
it to synthesize texture stacks, as well as generate tileable outputs.

2.2 Texture Tileability

Synthesizing tileable textures has received surprisingly little
attention in the literature until recent years. Moritz et al. [13]
propose a non-parametric approach that is able to synthesize
textures from a single example while preserving its stationarity,
which measures how tileable the texture is. Li et al. [22] propose a
GraphCuts-based algorithm. They first find a patch that optimally
represents the texture, then use graph cuts to transform its borders to
improve its tileability. This method allows for synthesizing multiple
maps at the same time. Relatedly, Deliot and Heitz [20] propose a
histogram-preserving blending operation for patch-based synthesis
of tileable textures, particularly suited for stochastic textures. The
power of deep neural networks for tileable texture synthesis has
also been leveraged in the past years. First, Rodriguez-Pardo et
al. [21] exploit latent spaces in a pre-trained neural network to
find the size of the repeating pattern in the input texture. Then,
they use perceptual losses for finding the optimal crop of the
image such that, when tiled, looks the most similar to the original
image. Also leveraging deep perceptual losses and using Neural
Cellular Automata [52] as an image parameterisation, Niklasson
et al. [23] generate self-organizing textures that are seamlessly
tileable by design, but are limited in resolution and by the quality
of the gram matrix perceptual metric used as a loss function [53].
Bergmann et al. [16] achieve tileability in their output textures by
training a multi-image GAN in a periodic spatial manifold. Our
proposed method does not follow any of these approaches. Instead,
we build upon a state-of-the-art single-image texture synthesis
method, which is able to generate high-quality and high-resolution
images, and extend it to generate textures which are tileable. To this
end, we propose a sampling algorithm that finds the input of the
generative process that maximizes a novel tileability metric. Our
goal is to preserve the input original texture as intact as possible
while imposing artifact-free continuity at the intersection of the
seams when the texture is tiled. Furthermore, our method has a
reduced computational footprint compared to other deep generative
texture synthesis methods as we say in the results section.

2.3 Deep Internal Learning

Learning patterns from a single image has been studied in recent
years, in contexts different to those of texture synthesis. Ulyanov
et al. [54] show that single images can be represented by randomly
initialized CNNs, and show applicability on denoising or image
inpainting problems. A similar method is proposed by Shocher
et al. [55] for single-image super-resolution. Additionally, single
images have shown to be enough for learning low-level features
that generalize to multiple problems [56]. Hypernetworks [57]
in Implicit Neural Representations [58], [59] also allow for shift-
invariant priors over images, which can then used in generative
models [60]. Single-image generative models have been explored
for domains other than textures. GANs trained on a single
image have been used for image retargeting [61], deep image
analogies [62], or for learning a single-sample image generative
model [63], [64], [65], [66], [67]. These methods, while powerful
for natural images, are not well-behaved for textures, as shown
in [15] and [18]. By introducing inductive biases specially designed
for textured images, characterized by their repeating patterns, deep
texture synthesis methods achieve better performance in textured
images than generic single-image synthesis approaches, which need
to account for more globally coherent semantic patterns.



RODRIGUEZ-PARDO, GARCES: SEAMLESSGAN: SELF-SUPERVISED SYNTHESIS OF TILEABLE TEXTURE MAPS 3

𝑠𝑣

𝑠ℎ
𝑥0

𝑥0

𝑥0

𝑥0

𝐹0
𝒯

𝑡

𝒯

𝒯𝑐

Generate seamless texture 𝒢: 𝑡→ 𝒯

ℰ

𝐺𝐴

𝐺𝑁

𝒟
ℛ1 ℛ𝑙…

Tileability metric 𝒬(𝒯𝑐)Center crop 𝒯𝑐

Fig. 2: Overview of SeamlessGAN. A crop t of the input texture stack T , is fed to an encoder E , which transforms it into a latent
space x0. We tile this latent space vertically and horizontally, obtaining a latent field F0. F0 is further processed by several residual
blocks Ri, i ∈ {1, l}. The resulting latent variables are transformed by two different decoders, GA and GN , which output 4 copies of
a candidate tileable texture T̂ . By cropping the center part of this texture, we obtain a single of those copies, with seamless borders,
T̂c. Additionally, this texture can be analyzed by a discriminator D which provides local estimations of the quality of the synthesis.
Using a tileability evaluation function Q, which, by analyzing two vertical and horizontal search areas sv, sh, it is able to detect artifacts
that may arise when tiling the texture. This gives us an estimation of how tileable the texture is. This estimation can then be used by a
sampling algorithm for generating high-quality tileable textures.

3 OVERVIEW

Our method takes as input an untileable texture stack T , which is
a layered representation –or SVBRDF [68]– of a material used by
render engines to virtually reproduce it. A typical texture stack is
composed of several maps such as albedo, normals, or roughness.
For simplicity, and without losing generality, we assume that our
texture stacks have two maps: an albedo A, and a normal map N,
both are RGB images of the same dimensions. There are several
methods that generate texture stacks for any material using, for
example, smartphones [24], [25], [26], [69], however, these stacks
are not tileable by default. Having this data as input, we propose a
two-step automatic pipeline to generate tileable texture stacks from
arbitrary material input exemplars.
In the first step, described in Section 4, we use crops t of the input
texture T to train a Generative Adversarial Network (GAN) able
to synthesize novel untileable texture stacks T ′ using adversarial
expansion [12]. This training framework has shown to provide state-
of-the-art results on single-sample texture synthesis, surpassing
previous approaches [16], [70], [71]. Thanks to using a GAN, we
learn an implicit representation of the texture parameterised in two
neural modules: G and D. G : t→ T ′ is a generator that outputs
new untileable textures which double the spatial resolution of the
input.D is a discriminator that, thanks to the adversarial framework
used for training, is able to distinguish real from fake textures.
In the second step, described in Section 5, we produce tileable
stacks by means of two key ideas: first, we tile a latent space x0 of
the trained generator G, obtaining a novel texture stack showing
continuity at the seams intersection T̂ . Second, we implement
a sampling process using the trained discriminator D used as
quality metric Q to find an optimally tileable texture stack T ∗. An
overview of our sampling step is shown in Figure 2.
In the following, we first describe our GAN architecture, including
our proposal to deal with textures stacks. Then, we describe the
sampling process to generate tileable ones.

4 SELF-SUPERVISED TEXTURE STACK SYNTHESIS
USING ADVERSARIAL EXPANSION

For each input texture T we train a GAN, whose generator G is able
to synthesize novel examples T ′. Unlike other GAN frameworks,
which take as input a random vector, we use crops t of the original

stack as input to guide the generative sampling, such that, T̂ ′ =
G(t) for t ∈ T . The training strategy builds upon the work of
Zhou et al. [12], which uses adversarial expansion to train the
network as follows: First, a target crop t ∈ T of 2k × 2k pixels
is selected from the input stack. Then, from that target crop t, a
source random crop ts ∈ t is chosen with a resolution of k × k
pixels. The goal of the generative network will be to synthesize
t given ts. This learning approach is fully self-supervised. The
generative model is trained alongside a discriminator D, which
learns to predict whether its inputs are the target crops t ∈ T or
the generated samples T ′ = G(ts). Figure 3 shows an overview of
the training strategy.

4.1 Network Architecture

SeamlessGAN is comprised by an encoder-decoder convolutional
generator G with residual connections, and a convolutional dis-
criminator D. So as to be able to synthesize textures of multiple
different sizes, the networks are designed to be fully-convolutional.
We follow the residual architectural design in [12], with two
extensions: First, building on recent advances on style transfer
algorithms, we use Instance Normalization [72] before each
ReLU non-linearity in the generator and each Leaky-ReLU [73]
operation in the discriminator. This allows to use normalization for
training the networks without the typical artifacts caused by Batch
Normalization [74], [75], [76], [77]. Second, in order to allow
for the synthesis of multiple texture maps at the same time, we
propose a variation in the generator architecture. In the following,
we describe the details of each component, with a particular focus
on the elements that are different from [12].
Generator: The generative architecture proposed is comprised
of three main components: An encoder E , which compresses
the information of the input texture t into a latent space, x0 ←
E(t), with half the spatial resolution of the input texture. Then,
a set of residual blocks, Ri, i ∈ {1, l}, which learn a compact
representation of the input texture xi ← Ri(xi−1)+xi−1. Finally,
a stack of decoders G that transforms the output of the last residual
block Rl into an output texture T ′ ← G(xl). Residual learning
allows for training deeper models with higher levels of visual
abstraction and which generate sharper images [78], [79], [80].
Similar residual generators have been used in unsupervised image-
to-image translation problems [81].



4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PRE-PRINT)

ℒ
𝑎
𝑑
𝑣

ℒ
𝑆
𝑡𝑦
𝑙𝑒

𝒢

ℒ1
𝑎 ℒ1

𝑛

𝒯
𝑡

𝑡𝑠

𝒢(𝑡𝑠)

Fig. 3: An overview of our training framework for learning to
synthesize texture stacks through adversarial expansion. At each
iteration, from an input stack T , we randomly crop a target crop t,
from which we select a source crop ts. The goal of the generator G
is to estimate t given ts. We measure the difference between target
and estimated crops using a combination of adversarial, pixel-wise
and perceptual loss functions.

Synthesizing a texture stack of multiple maps with a single
generative model poses extra challenges over the single map case.
Each map represents different properties of the surface, such as
geometry or color, resulting in visually and statistically different
images. This suggests that independent generative models per map
could be needed. However, the texture maps must share pixel-wise
coherence, which is not achievable if multiple generative models
are used. Inspired by previous work on intrinsic images [82], [83],
[84], we propose the use of a generative model that learns a shared
representation of all the texture maps, but has different decoders
for each of them. The latent space within the generator will thus
encode a high-level representation of the texture, which is then
decoded in different ways for each different map in the texture
stack. Specifically, we train a stack of decoders, G = {GA, GN},
one for each map of the stack (albedo and normals in our case).
Discriminator: For the discriminator D, we use a PatchGAN
architecture [12], [80], [81], [85], which, instead of providing a
single estimation of the probability of the whole image being real,
it classifies this probability for small patches of it. This architecture
has several advantages for our problem. First, it provides local
assessments on the quality of the synthesized textures, which we
exploit for obtaining high-quality textures. Second, its architecture
design allows to provide some control on what kind of features
are learned: by adding more layers to D, the generated textures
are typically of a higher semantic quality but local details may be
lost, as we show on the Supplementary Material. A comprehensive
study on the impact of the depth of D can be found in [12].
Loss Function: We train the networks following a standard GAN
framework [86]. We iterate between training D with a real sample
texture stack T and a generated sample T ′. The adversarial loss
Ladv is extended with three extra loss terms: La

1 , Ln
1 , and Lstyle;

corresponding respectively to the pixel-wise distance between the
generated and target albedo, normals, and a perceptual loss. The
perceptual loss Lstyle is computed as the sum of the perceptual
losses between target and generated albedo maps, and target and
generated normal maps. We follow the gram loss described in [87]
as our perceptual loss. We weight the total style loss by weighting
different layers in the same way described in [12], [21], [87]. Our
global loss function thus is defined as:

L = λadvLadv + λLa
1
La
1 + λLn

1
Ln
1 + λstyleLstyle (1)

(a) t (b) T̂ , l = 0 (c) T̂ , l = 3 (d) T̂ , l = 5

Fig. 4: Impact of the latent field level l on the quality of the output
textures T̂ = G(t), using the same input t. Generating the latent
field Fl early layers (l = 0) generates the best visual results, later
layers either create small artifacts (l = 3) or generate unrealistic
textures (l = 5). A zoom of the central crop is shown as an inset.

5 TILEABLE TEXTURE STACK SAMPLING

5.1 Latent Space Tiling
After training, the generator G is able to synthesize novel samples
of the texture given a small exemplar of it. Although these novel
samples duplicate the size of the input, they are not tileable by
default. Previous work [14] showed that by spatially concatenating
different latent spaces in a ProGAN [49] generator, it is possible to
generate textures that contain the visual information of those tiles
while seamlessly transitioning between the generated tiles. Inspired
by this idea, we spatially repeat (horizontally and vertically) the
first latent space x0 within the generative model, obtaining a latent
field F0. This field is passed through the residual layers Rl and
the decoders G to get a texture stack, T̂ , that contains four copies
of the same texture with seamless transitions between them (see
Figure 2). At first, the latent field F0 shows strong discontinuities at
the borders between the four copies. Later, as the texture is passed
through the network, these artifacts are progressively transformed
into seamless borders by the rest of the residual blocks and the
decoder of the model. The intuition behind this idea is that, after
training the network with the target texture, each of these latent
spaces encode low resolution versions of the input in the spatial
domain and semantically-rich information in the deeper layers.
A seamlessly tileable texture stack T̂c is obtained by cropping the
central region (with an area of 50% of T̂ ). The predicted texture
T̂ has 4 × 4 the resolution of the input crop t. Thus, after the
cropping operation, T̂c has twice the resolution of the input t.
A key parameter to select is the level l at which to split the
generative process. As shown in Figure 4, generating the latent
field F by tiling earlier levels of the latent space forces the network
to transform F more times, thus resulting in more seamlessly
tileable textures. We confirm the results found in [14] and noticed
that generating this latent field at earlier levels of the latent space
(l ∈ {0, 1}) yields the best visual results, by allowing for smoother
and more semantically coherent transitions between tiles. We thus
tile the output of the encoder x0 = E(t), before transforming it by
the residual blocks Ri.

5.2 Discriminator-guided Sampling
Our strategy to tile the latent space guarantees that the generated
texture is a continuous function with smooth transitions between the
boundaries of the tiles. However, in contrast to the algorithm in [14],
where the latent spaces are drawn from random vectors, ours are
encoded representations of input textures. Thus, the selection of
the input that the network receives plays an important role on the
quality of the output textures. As shown in Figure 5, not all the
generated textures are equally valid. This selection can be posed



RODRIGUEZ-PARDO, GARCES: SEAMLESSGAN: SELF-SUPERVISED SYNTHESIS OF TILEABLE TEXTURE MAPS 5

(a) T̂1 (b) D(T̂1) (c) T̂2 (d) D(T̂2)

Fig. 5: Outputs of D with textures of different qualities. (a) The
generated albedos T̂1 are artifact-free on the search areas (b),
thus the discriminator D(T̂1) is fooled to believe T̂1 are real. (c)
Failed generated samples T̂2 cannot fool the discriminator, which
finds artifacts D(T̂2) (d). Further examples can be found on the
Supplementary Material.

as an optimization problem: t∗ = argmaxtQ(G(t)), where the
goal is to find the crop t∗ that maximizes the quality Q of the
generated texture G(t) = T̂c. To solve this optimization problem,
one option could be to pose it as an optimization in the generative
latent space. However, we found that a simpler solution based on
sampling already provides satisfactory results. The remainder of
this section explains the sampling process and the quality metric.
Sampling: By using a fully-convolutional GAN, our model can
generate textures of any sizes, hardware being the only limiting
factor. This is key for tileable texture synthesis as, even if a
given texture is seamlessly tileable, larger textures require fewer
repetitions to cover the same spatial area, which ultimately results
in fewer repeating artifacts, as illustrated in Figure 6 (a). There
are two main challenges when finding tileable textures: the input
texture needs to contain the distribution of the existing repeating
patterns; and the input tile itself must not create strong artifacts
when tiling the latent spaces of the generator.
Our goal is thus to find the largest possible tileable texture stack.
To do so, we sample multiple candidate crops for a given crop
size c ∈ {cmin, cmax}, where cmax is the resolution of the input
T . We sample crop sizes starting at the largest possible size c =
cmax, and stop when we find a suitable candidate according to
the tileability metric Q. As shown in Figure 6 (b), this sampling
mechanism also allow us to generate multiple tileable candidates
for a single exemplar if we choose different parts of T as input.
Discriminator-guided Quality Function, Q: The second com-
ponent of our sampling strategy is the quality function used to
determine whether a stack is tileable or not. We observed that
the artifacts appear on vertical and horizontal frames around
the center of the textures (Figure 5). This is likely caused by
strong discontinuities or gradients on the same areas of the tiled
latent spaces, which the rest of the generative network fails
to transform into realistic textures. Following recent work on
generative models [88], we use the discriminator D as a semantic-
aware error metric that can be exploited for detecting local artifacts
in the generated textures. This can be done in our case because
the global loss function contains pixel-wise, style, and adversarial
losses. The adversarial loss learns the semantics of the texture,
whereas the L1 and style losses model color distances or repeated
patterns [21]. This combination of loss functions allows to balance
textural, semantic and perceptual color properties.

(a)

(b)

Fig. 6: SeamlessGAN can generate multiple tileable outputs from
the same sample T . By cropping different parts of T , we can
feed the generator G with different inputs tc (shown on the left),
generating tileable textures T̂c of different sizes. On the example at
the top (a), the synthesized images are tiled so they cover the same
spatial extent, which shows that, even if the textures are tileable,
larger textures generate fewer repeating artifacts. (b) Shows the tile
resulting from sampling different parts of the input image. More
results are included in the Supplementary Material.

We thus design a quality evaluation function Q that estimates
if the generated texture stack T̂c is tileable, looking for artifacts
on a central area, S ∈ D(T̂c) of the discriminator. This area is
composed of two regions, S = sv ∪ sh, where sv is a vertical area,
and sh is an horizontal one, both centered on the output of the
discriminator (Figure 2). The function Q leverages the fact that D
outputs 0 when it believes a patch to be synthetic. However, as the
values are sample-dependent, we establish a threshold τ ∈ R using
the values of the rest of the image S as a reference τ = γ ·min(Sr),
where Sr = D(T̂c) ∩ S is the remaining part of the image, and
γ ∈ R is a threshold that allows to control the sensitiveness of Q.
Consequently, Q(T̂c) is 1 if min(sv) and min(sh) are greater or
equal than τ , considering the texture as tileable, and 0 otherwise.
The goal ofQ is to estimate whether or not the central areas, where
discontinuities may be present, are as realistic as the rest of the
texture. It works as a classification function which returns a high
value if the texture is identified as real by the discriminator in such
areas. This allows us to create a sampling strategy that distinguishes
between images with local artifacts from seamless textures. By
using minimum values instead of the mean estimation of the
discriminator, our quality metric focuses on detecting artifacts
which may arise during the latent space tiling operation.

6 IMPLEMENTATION DETAILS

As described in Section 4, we follow a standard GAN training
framework, by iterating between training the discriminator and
the generator. We use a batch size of 1, and an input size of
k = 128. All weights are initialized by sampling a gaussian
distribution N (0, 0.02), following standard practice [81]. G has
l = 5 residual blocks with ReLU activations, and D is comprised
of 5 convolutional layers with Leaky-ReLU non-linearities, and
a Sigmoid operation at the end. We refer the reader to the
Supplementary Material for an ablation study on the influence



6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PRE-PRINT)

Fig. 7: Crops of synthesized textures using our method. We observe
that pixel-wise coherence between maps is preserved.

of the network size. We use a stride of 2 for the downsampling
operations in E and transposed convolutions [89] for upsampling
in the decoders G. We weight each part of the loss function as:
λadv = λstyle = 1, and λLa

1
= λLn

1
= 10.

The networks are trained for 50000 iterations using Adam [90],
with an initial learning rate of 0.0002, which is divided by 5, after
iterations 30000 and 40000. Aside from random cropping, we do
not use any other type of data augmentation method. The models are
trained and evaluated using a single NVIDIA GeForce GTX 1080
Ti. Even if training takes around 40 minutes for each texture stack,
once trained, the generator can generate individual new samples in
milliseconds, before checking for tileability. We use PyTorch [91]
as our learning framework. To accelerate the training process,
we leverage mixed precision training and automatic gradient
scaling [92]. Every operation in the training pipeline is done
natively in GPU using Torchvision [93]. These optimizations allow
us to train the networks one order of magnitude faster than previous
methods [12]. The input textures T tested in this paper have, on
average, 500 pixels in their larger dimension, for which our method
can generate tiles of at most 1000 pixels. We use Photometric
Stereo [94] for computing the normals of fabric textures, and
artist-generated normals for the other samples. Please refer to the
Supplementary Material for further implementation details.
We tile the latent space at its earliest level (Fl, l = 0), as it provides
the best quality results, as shown on Section 5.1. For identifying
the tileability of textures, we use a search area S that spans a 20%
of each spatial dimension of the textures. For all the results shown,
γ = 1. We choose cmin = 100 pixels, and cmax equal to the
resolution of the whole input texture. This means that for the level
of cmax, only one texture is sampled. For each c < cmax, we
sample 3 different random crops. Typically, for the results shown
in the paper, a tileable texture stack is found at high-resolution
crop sizes, c ≥ cmax − 10, thus needing to sample and evaluating
less than thirty random crops before finding a satisfactory solution.
This entire sampling procedure takes less than five minutes.

7 EXPERIMENTS

In this section, we evaluate our two main contributions: first, in
Section 7.1 we study the impact of the design choices of the
generator G to synthesize a multi-layer texture stack, and second,
the quality of the tileable texture synthesis through several ablation
studies. We study the inter-map consistency in Section 7.2, and the
impact of the loss function in Section 7.3. Finally, we compare our
method with methods on tileable texture synthesis (Section 8).

7.1 Generator G Design
One of the main challenges when synthesizing texture stacks using
a single generator is to preserve the low-level details of each of the
texture maps whilst maintaining the local spatial coherence between
them; if this coherence is lost, renders that use the synthesized maps
will show artifacts or look unrealistic. We propose two different

SSIM ↑ Si-FID ↓ LPIPS ↓
G1

Albedo 0.2774 0.3462 0.4826
Normals 0.2364 0.3636 0.4870

G2
Albedo 0.3123 0.3275 0.4377
Normals 0.2921 0.4019 0.4340

TABLE 1: Quantitative comparison between our variations of the
generator G. We show the average results on different metrics
across different texture stacks, separated by maps. As shown, G2
outperforms its baseline across metrics and texture maps. G1 only
yields better scores at the Si-FID metric on the normal map. Higher
is better for SSIM, while lower is better for Si-FID and LPIPS.

variations of the single-map generative architecture G presented
in [12], each of which makes different assumptions on how the
synthesis should be learned taking into account the particular
semantics and purpose of each map. A diagram of each proposed
architecture is shown in Figure 9. For a fair evaluation, we follow
the criteria that both networks must have approximately the same
number of trainable parameters.
Our baseline, G1, treats the texture stack as a multiple channel
input image, and entangles every texture map in the same layers.
It assumes that the maps in the stack share most of the structural
information and, as such, there is no need to generate them
separately. Thus, the last layer in the decoder outputs every texture
map. Our proposed alternative architecture, G2 finds a shared
representation of each texture map, but has a separate decoder for
each of them. As such, the residual blocks are shared for all the
texture stack, but each decoder can be optimized for the semantics
and statistics of each particular map.
To quantitatively evaluate which architecture produces the highest
quality output we compare the original texture with the generated
one using standard metrics: SSIM, Si-FID, and LPIPS. The
Structural Similarity Index Measure (SSIM) [95] is a perceptual-
aware metric, working on the pixel space, that measures the
similarity in structural information, and may be appropriate to
evaluate synthesized textures. The Si-FID [63] is a single image
extension of the Fréchet Inception Score (FID) [96], which
measures the difference in deep latent statistics between natural
and artificially generated images. Finally, we use the Learned
Perceptual Image Patch Similarity (LPIPS) [97] as a perceptual
distance metric in deep image spaces. This metric is widely used
for evaluating generative models [18], [98], [99], [100], [101].
The baseline G1 shows more artifacts than G2, most likely due
to the fact that the generation parts of the network are not fully
separated. A quantitative evaluation is shown in Table 1, showing
that G2 outperforms G1 from perceptual and statistical standpoints.
Those metrics require the input and target images to have the same
spatial dimensions. To obtain this, we crop the 50% center area of
each generated stack, which doubles the dimensions of the inputs
due to the adversarial expansion approach we follow, and compare
them with the input textures. In summary, G2 allows to generate
textures that better preserve the properties of the input images
without any additional computational cost and without requiring to
modify the loss function, or the discriminator design.

7.2 Inter-map Consistency

Whilst our generators G can generate high-quality tileable pairs
of albedo and normal maps, there is no guarantee that those maps
are pixel-wise coherent, as no part in the loss function explicitly
accounts for this relationship. The Lstyle loss is computed
separately for each map in the texture stack, which may generate



RODRIGUEZ-PARDO, GARCES: SEAMLESSGAN: SELF-SUPERVISED SYNTHESIS OF TILEABLE TEXTURE MAPS 7

ℒ𝑠𝑡𝑦𝑙𝑒 + ℒ1 + ℒ𝑎𝑑𝑣

ℒ1

ℒ1 + ℒ𝑎𝑑𝑣ℒ𝑠𝑡𝑦𝑙𝑒 + ℒ𝑎𝑑𝑣ℒ𝑠𝑡𝑦𝑙𝑒 + ℒ1

ℒ𝑠𝑡𝑦𝑙𝑒 ℒ𝑎𝑑𝑣Input

Fig. 8: Ablation study on the impact of the loss function on the
quality of the synthesized textures. We evaluate each network using
the same input, marked using a blue box. As shown, training G
using the full loss function yields the best results. Each component
is weighted by a λ, as specified in Section 6.

non-coherent gradients. Furthermore, our architecture of choice
G2 separates the decoding of each map in different parts of its
architecture, which may hinder the generation of spatially-coherent
maps. Nevertheless, we show that this is not a problem in practice.
Figure 7 shows crops of our synthesized texture maps. It can be
seen that pixel-wise coherency between maps is preserved even
for challenging geometric structures. We argue that the role of the
discriminator is key to detect inter-layer inconsistencies by yielding
lower probabilities for non-coherent maps. Even if separating the
decoders may increase the risk of incoherent texture maps, this
coherence is forced by the discriminator during training. To test this
empirically, for the textures in Figure 7, we fed the discriminator
with a crop of the original stack, a crop with the normals translated
5 px, and translated 100 px, for which we obtain average values of
0.99, 0.35, and 0.32, respectively. This suggests that, since during
training, the discriminator receives the entire texture stack at once,
it learns to identify spatial inconsistencies between maps.

7.3 Loss Function Ablation Study
As described in Section 4, the generator G is trained to minimize
a loss function, which is comprised of adversarial, a perceptual
and pixel-wise components. Each of these have different impacts
on the output synthesis. We hereby study the impact of each of
these components. To better isolate the impact of each metric,
we perform this study using a limited generator that only outputs
albedo maps. As we show on Figure 7.3, the adversarial loss Ladv

provides high-level semantic consistency, the L1 norm acts as a
regularization method which removes artifacts, while the perceptual
loss Lstyle adds additional details to fully represent the texture.
Similar findings are reported in [12]. None of these loss functions
yield compelling or artifact-free results on isolation, being the
adversarial loss the most important factor of the global function.
Further results are included in the Supplementary Material.

8 RESULTS AND COMPARISONS

Most tileable texture synthesis methods have not shown results
on synthesizing texture stacks. While adding this capability is
reasonably easy for some non parametric methods [21], [22],
others require major changes in their design. In particular, as
we have shown in Section 7.1, expanding the architecture of deep
learning methods for generating more than one map requires special

ℰ
ℛ0..𝑙

𝐺𝑁,𝐴

𝒢1

ℰ
ℛ0..𝑙

𝐺𝐴

𝐺𝑁

𝒢2
Input

Fig. 9: A comparison of the results of our proposed architectures.
Separating the decoders of the network for each map (G2)
outperforms the joint-decoder baseline (G1) for both texture maps
in the stacks. It generally allows for more varied albedo maps, with
a more correct structure and style; as well as more accurate and
sharper normal maps. The outputs in this figure are not tiled, for
improved visibility of the artifacts created by G1. In blue, we show
an up-sampled crop of the output textures. We refer the reader to
the Supplementary Material for more qualitative comparisons.

attention to balance the map’s interdependence with the network’s
capacity and expected quality. Therefore, in this section, in order to
be able to compare our method with other works, we use a reduced
version of our generator that only outputs a single albedo map.
Qualitative Analysis: First, we compare with the Texture Station-
arization algorithm proposed in [13] using examples taken from
their own dataset, as their code is not publicly available. A key
difference between both methods is that, while their method aims to
maximize the stationarity properties of the textures using external
metrics, our method learns them from the texture itself, using a self-
supervised approach. This results in our method better preserving
the content of the original input. As shown in Figure 10, our
method shows compelling results for the kind of textures shown in
their paper. In the fence example, our methods better preserves the
vertical straight lines. For the wall example, both methods shows
compelling results, capturing a different repetition pattern. We
include more results using this dataset, in addition to comparisons
with the other methods on the Supplementary Material.
As Moritz et al.’s dataset contains mainly textures of human-made
environments, we gather a different set of images of greater variety
in their regularity and content. Figure 11 shows a comprehensive
comparison with the other methods. The work by Li et al. [22],
based on Graph-Cuts, works reasonably well if the transformation
can be done locally at the seams but fails when the required
changes are global, as happens in the basket. The Repeated Pattern
Detection algorithm proposed by Rodriguez-Pardo et al. [21] is
not able to handle many of these challenging cases, which do not
represent grid-like textures, as in the bananas or stars. The Periodic
Spatial GAN (PSGAN) proposed by Bermann et al. [16] generates
artifacts, not maintaining the content of the texture, as in the daisies
or the hieroglyph examples. A similar effect is observable in the
method of [23], that use self-organizing representations through



8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PRE-PRINT)

Input Texture Stationarization SeamlessGAN

Fence

Wall

Fig. 10: A comparison with the work on Texture Stationarization
by Moritz et al. [13], using textures from their dataset. The results
are tiled 2× 2 times to help visualization.

neural cellular automata. The output of the method is seamless but
the integrity of the original texture is not preserved in many cases,
for example, in the hieroglyph or the stars.
Our method favors keeping high-level and bigger semantic struc-
tures of the textures, resulting in larger samples with more variety.
The modification applied to the texture is the minimum required
to make it seamlessly tileable. It provides high-quality outputs for
regular textures with uneven illumination and perspective distortion,
as the basket, textures which are greatly irregular, such as the
bananas, and stochastic ones, like the strawberry. While non-
parametric synthesis methods are typically computationally cheap,
obtaining results in less than one minute [20], [21], [22], at the cost
of quality and generality, parametric methods are more expensive
and slower. Our method is competitive in computational cost when
compared to other parametric synthesis methods. Our entire training
and sampling process takes less than 45 minutes. In comparison,
PSGAN [16] needs 4 hours to train, the work by Zhou et al. [12]
requires 6 hours, and the method of Niklasson et al. [23] takes 35
minutes to generate textures limited to 200× 200 pixels. On the
contrary, our method is not limited by the size of the input texture
and can synthesize tiles of any size thanks to the fully-convolutional
architecture, hardware being the only limiting factor. We include
further and full-resolution results on the Supplementary Material.
Quantitative Comparison: Following a similar evaluation scheme
as proposed in Section 7.1 for measuring the differences between
input and synthesized images, a quantitative evaluation is shown in
Table 2. We use Moritz’s dataset for a fair comparison with every
method. All the images we used are included in the Supplementary
Material. The metrics we use for this experiment require that the
input and synthesized images have the same resolution. To achieve
this, and, in order to account for artifacts in the borders of the
generated textures, we tile the synthesized images until they cover
the same resolution as their corresponding inputs.
Interestingly, methods based on patches [13], [22], [45] obtain
better SSIM and Si-FID scores than previous deep learning-based
methods [16], [23]. This difference is not seen in the LPIPS metric.
This suggests that patch-based methods preserve better the structure
of the input textures than previous neural parametric models. Our
method, by combining a variety of loss functions, allows for a better
preservation of the style and semantic content of the generated
textures. Furthermore, our latent space manipulation algorithm

SSIM ↑ Si-FID ↓ LPIPS ↓
Deloit et al. [20] 0.1424 1.3471 0.6207
Li et al. [22] 0.2086 0.9529 0.5818
Moritz et al. [13] 0.1968 0.7620 0.5171
Rodriguez et al. [21] 0.2144 1.2958 0.5137
Bergmann et al. [16] 0.1723 1.4355 0.5624
Niklasson et al. [23] 0.1753 1.3171 0.5328
SeamlessGAN 0.2341 0.6311 0.4792

TABLE 2: Quantitative comparison between different methods. We
show the average results on different perceptual metrics across
a variety of textures, shown in the Supplementary Material. As
shown, SeamlessGAN consistently outperforms its counterparts
at every studied metric. We tile the outputs until they match the
spatial resolution of the input examples. Higher is better for SSIM,
while lower is better for Si-FID and LPIPS.

allows for seamless borders between tiles, outperforming both
previous non-parametric and parametric methods in perceptual and
structural similarity. The magnitude of the Si-FID metric varies
significantly between the values obtained in Table 1 and Table 2,
which indicates that this metric may be overly sensitive to the
global statistics of the dataset.
Limitations and Discussion: Our method is inherently limited by
the capabilities of the adversarial expansion technique to learn the
implicit structure of the given texture. That is, if the input does not
show enough regularity, the adversarial expansion fails, as shown
in Figure 12. It is interesting to see that the synthesis of the dotted
texture fails to reproduce the larger dots, as they are very scarce.
However, the remaining structure is very well represented.
Tiling single texture maps, even if they contain seamless borders,
may generate perceptible repetitions. This is an intrinsic limitation
of any single sample tileable texture synthesis. Approaches such
as Wang Tiles [95] can tackle these limitations, but have additional
disadvantages like increased memory and run-time consumption,
rendering them less practical for real-time applications. Alterna-
tively, procedural methods [3] are the most effective way to generate
material samples preserving textural properties at multiple scales;
however, present several limitations in the range of materials that
can be generated to make them fully usable.

9 CONCLUSIONS AND FUTURE WORK

We have proposed a deep parametric texture synthesis framework
capable of synthesizing textures into tileable single-tiles, by
combining recent advances on deep texture synthesis, adversarial
neural networks and latent spaces manipulation. Our results show
that our method can generate visually pleasing results for images
with different levels of regularity and homogeneity. This work is
the first method capable of exploiting properties of deep latent
spaces within neural networks for generating seamless textures,
and opens the opportunity for end-to-end tileable texture synthesis
methods without the need for manual input. Comparisons with
previous state-of-the-art methods show that our method provides
results which better maintain the semantic properties of the textures,
while being able to synthesize multiple maps at the same time.
Our method can be improved in several ways. First, the adversarial
expansion framework, while powerful, it has some potential
pitfalls that hinders its widespread applicability. The same neural
architecture is used for every texture but, as discussed, different
choices on the architecture make different assumptions on the
nature of the textures. We have proposed a generic architecture
that works well for many examples, but recent advances in Neural
Architecture Search [102] may provide better priors on the optimal



RODRIGUEZ-PARDO, GARCES: SEAMLESSGAN: SELF-SUPERVISED SYNTHESIS OF TILEABLE TEXTURE MAPS 9

Input

Basket

Stars

Strawberry

Garden

Hieroglyph

Histogram
Blending

Repeated Pattern
Detection PSGAN

Self-Organizing
TexturesGraph-Cuts SeamlessGAN

Corks

Bananas

Daisies

Fig. 11: Comparison with previous methods. On the left column, we show the input textures. From left to right, the synthesized results of
Histogram Blending, by Deloit et al. [20], the GraphCuts algorithm by Li et al. [22], Repeated Pattern Detection by Rodriguez-Pardo
et al. [21], PSGAN by Bergmann et al. [16], Self-Organizing Textures by Niklasson et al. [23]; and ours. Outputs are tiled a similar
number of times (at least twice in each dimension) for better visualization. Our method generally captures better the overall structure
of the texture, while providing seamless and semantically coherent borders, for enhancing tileability. From top to bottom, we sample
c = 4, 12, 5, 17, 13, 1, 19 and 43 input crops before obtaining a tileable texture. More results are included in the Supplementary
Material.



10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PRE-PRINT)

Fig. 12: A limitation of our texture synthesis algorithm: Left:
Input texture stacks; right: synthesized stacks. The network fails to
replicate the pattern if the occurrence is not frequent enough, as we
can see in the base color of these two examples. On the other hand,
the synthesized normal map is consistent as its repetitive structure
is seen frequently by the network.

neural architecture to use for each sample. Furthermore, each
texture synthesis network is trained from scratch. This is not only
computationally costly, but learning to synthesize one texture may
help in the synthesis of other textures, as shown by [15]. Fine-tuning
pre-trained models for generating new textures may provide cheaper
syntheses. Besides, our discriminator, while capable of detecting
local artifacts, provides little control for separating such artifacts
and global semantic errors. Recent work on image synthesis may
provide guidance onto designing better discriminative models [88],
training procedures [103], [104], image parametrizations [23],
[105], [106] or perceptual loss functions [53].
Second, we proposed a synthesis solution based on manipulating
latent spaces within the generative model, but explicitly training the
network to generate tileable textures may provide better results than
our approach. Besides, our sampling procedure could be extended
for better selection of textures, by comparing histograms of the
activations of the discriminator on the selected central area, instead
of simply comparing minimum values.
Finally, our method has the advantage of being fully automatic,
however, pre-processing the texture images so they are more easily
tileable can help the synthesis process. For example, automatically
rotating the textures so their repeating patterns are aligned with
the axes was studied by [21]. Powerful methods for artifact [107]
and distortion [108] removal could be applied as a pre-processing
operation to the input textures before training the generative models,
or as additional components to their loss function for improving
tileability or homogeneity.

REFERENCES

[1] P. Tu, L.-Y. Wei, K. Yatani, T. Igarashi, and M. Zwicker, “Continuous
curve textures,” ACM Transactions on Graphics (TOG), vol. 39, no. 6,
pp. 1–16, 2020.

[2] Y. Hu, J. Dorsey, and H. Rushmeier, “A novel framework for inverse
procedural texture modeling,” ACM Transactions on Graphics (ToG),
vol. 38, no. 6, pp. 1–14, 2019.

[3] P. Guehl, R. Allègre, J.-M. Dischler, B. Benes, and E. Galin, “Semi-
procedural textures using point process texture basis functions,” in
Computer Graphics Forum, vol. 39, no. 4, 2020, pp. 159–171.

[4] B. Galerne, A. Lagae, S. Lefebvre, and G. Drettakis, “Gabor noise by
example,” ACM Transactions on Graphics (ToG), vol. 31, no. 4, pp. 1–9,
2012.

[5] G. Gilet, B. Sauvage, K. Vanhoey, J.-M. Dischler, and D. Ghazanfarpour,
“Local random-phase noise for procedural texturing,” ACM Transactions
on Graphics (ToG), vol. 33, no. 6, pp. 1–11, 2014.

[6] G. Guingo, B. Sauvage, J.-M. Dischler, and M.-P. Cani, “Bi-layer
textures: A model for synthesis and deformation of composite textures,”
in Computer Graphics Forum, vol. 36, no. 4, 2017, pp. 111–122.

[7] E. Heitz and F. Neyret, “High-performance by-example noise using a
histogram-preserving blending operator,” Proceedings of the ACM on
Computer Graphics and Interactive Techniques, vol. 1, no. 2, pp. 1–25,
2018.

[8] Y. Guo, C. Smith, M. Hašan, K. Sunkavalli, and S. Zhao, “Materialgan:
Reflectance capture using a generative svbrdf model,” ACM Transactions
on Graphics (ToG), vol. 39, no. 6, pp. 254:1–254:13, 2020.

[9] Z. Li, K. Sunkavalli, and M. Chandraker, “Materials for masses: Svbrdf
acquisition with a single mobile phone image,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 72–87.

[10] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in Proceedings of the 28th annual conference on Computer
Graphics and Interactive Techniques, 2001, pp. 341–346.

[11] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization
for example-based synthesis,” in ACM Transactions on Graphics (ToG),
vol. 24, no. 3. ACM, 2005, pp. 795–802.

[12] Y. Zhou, Z. Zhu, X. Bai, D. Lischinski, D. Cohen-Or, and H. Huang,
“Non-stationary texture synthesis by adversarial expansion,” ACM
Transactions on Graphics (ToG), vol. 37, no. 4, Jul. 2018.

[13] J. Moritz, S. James, T. S. Haines, T. Ritschel, and T. Weyrich, “Texture
stationarization: Turning photos into tileable textures,” in Eurographics
Symposium on Geometry Processing, vol. 36, no. 2, 2017, pp. 177–188.

[14] A. Frühstück, I. Alhashim, and P. Wonka, “TileGAN: Synthesis of large-
scale non-homogeneous textures,” ACM Transactions on Graphics (ToG),
vol. 38, no. 4, 4 2019.

[15] G. Liu, R. Taori, T.-C. Wang, Z. Yu, S. Liu, F. A. Reda, K. Sapra, A. Tao,
and B. Catanzaro, “Transposer: Universal texture synthesis using feature
maps as transposed convolution filter,” arXiv preprint arXiv:2007.07243,
2020.

[16] U. Bergmann, N. Jetchev, and R. Vollgraf, “Learning texture manifolds
with the periodic spatial gan,” pp. 469–477, 2017.

[17] N. Jetchev, U. Bergmann, and R. Vollgraf, “Texture synthesis with spatial
generative adversarial networks,” arXiv preprint arXiv:1611.08207,
2016.

[18] M. Mardani, G. Liu, A. Dundar, S. Liu, A. Tao, and B. Catanzaro,
“Neural ffts for universal texture image synthesis,” Advances in Neural
Information Processing Systems, vol. 33, 2020.

[19] A. Hertz, R. Hanocka, R. Giryes, and D. Cohen-Or, “Deep geometric
texture synthesis,” ACM Transactions on Graphics (TOG), vol. 39, no. 4,
pp. 108–1, 2020.

[20] T. Deliot and E. Heitz, “Procedural stochastic textures by tiling and
blending,” GPU Zen, vol. 2, 2019.

[21] C. Rodriguez-Pardo, S. Suja, D. Pascual, J. Lopez-Moreno, and E. Garces,
“Automatic extraction and synthesis of regular repeatable patterns,”
Computers and Graphics (Pergamon), vol. 83, pp. 33–41, 10 2019.

[22] Z. Li, M. Shafiei, R. Ramamoorthi, K. Sunkavalli, and M. Chandraker,
“Inverse rendering for complex indoor scenes: Shape, spatially-varying
lighting and svbrdf from a single image,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 2475–2484.

[23] E. Niklasson, A. Mordvintsev, E. Randazzo, and
M. Levin, “Self-organising textures,” Distill, 2021,
https://distill.pub/selforg/2021/textures.

[24] V. Deschaintre, M. Aittala, F. Durand, G. Drettakis, and A. Bousseau,
“Flexible svbrdf capture with a multi-image deep network,” in Computer
Graphics Forum, vol. 38, no. 4, 2019, pp. 1–13.

[25] V. Deschaintre, G. Drettakis, and A. Bousseau, “Guided fine-tuning for
large-scale material transfer,” in Computer Graphics Forum, vol. 39,
no. 4. Wiley Online Library, 2020, pp. 91–105.

[26] Y. Guo, C. Smith, M. Hašan, K. Sunkavalli, and S. Zhao, “Materialgan:
reflectance capture using a generative svbrdf model,” ACM Transactions
on Graphics (TOG), vol. 39, no. 6, pp. 1–13, 2020.

[27] M. F. Cohen, J. Shade, S. Hiller, and O. Deussen, “Wang tiles for image
and texture generation,” ACM Transactions on Graphics (TOG), vol. 22,
no. 3, pp. 287–294, 2003.

[28] A. Akl, C. Yaacoub, M. Donias, J.-P. Da Costa, and C. Germain, “A
survey of exemplar-based texture synthesis methods,” Computer Vision
and Image Understanding, vol. 172, pp. 12–24, 2018.



RODRIGUEZ-PARDO, GARCES: SEAMLESSGAN: SELF-SUPERVISED SYNTHESIS OF TILEABLE TEXTURE MAPS 11

[29] L. Raad, A. Davy, A. Desolneux, and J.-M. Morel, “A survey of
exemplar-based texture synthesis,” Annals of Mathematical Sciences
and Applications, vol. 3, no. 1, pp. 89–148, 2018.

[30] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), vol. 2. IEEE, 1999, pp. 1033–1038.

[31] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut
textures: image and video synthesis using graph cuts,” ACM Transactions
on Graphics (ToG), vol. 22, no. 3, pp. 277–286, 2003.

[32] W. Dong, N. Zhou, and J.-C. Paul, “Optimized tile-based texture
synthesis,” in Proceedings of Graphics Interface 2007, 2007, pp. 249–
256.

[33] J. Portilla and E. P. Simoncelli, “A parametric texture model based on
joint statistics of complex wavelet coefficients,” International Journal of
Computer Vision, vol. 40, no. 1, pp. 49–70, 2000.

[34] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman, “Patch-
match: A randomized correspondence algorithm for structural image
editing,” ACM Transactions on Graphics (ToG), vol. 28, no. 3, p. 24,
2009.

[35] C. Barnes, F.-L. Zhang, L. Lou, X. Wu, and S.-M. Hu, “Patchtable:
Efficient patch queries for large datasets and applications,” ACM
Transactions on Graphics (ToG), vol. 34, no. 4, pp. 1–10, 2015.

[36] A. Kaspar, B. Neubert, D. Lischinski, M. Pauly, and J. Kopf, “Self tuning
texture optimization,” in Computer Graphics Forum, vol. 34, no. 2, 2015,
pp. 349–359.

[37] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and P. Sen, “Image
melding: Combining inconsistent images using patch-based synthesis,”
ACM Transactions on Graphics (ToG), vol. 31, no. 4, pp. 1–10, 2012.

[38] Y. Zhou, H. Shi, D. Lischinski, M. Gong, J. Kopf, and H. Huang,
“Analysis and controlled synthesis of inhomogeneous textures,” in
Computer Graphics Forum, vol. 36, no. 2, 2017, pp. 199–212.

[39] J. S. De Bonet, “Multiresolution sampling procedure for analysis
and synthesis of texture images,” in Proceedings of the 24th annual
conference on Computer Graphics and Interactive Techniques, 1997, pp.
361–368.

[40] D. J. Heeger and J. R. Bergen, “Pyramid-based texture analysis/synthesis,”
in Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques, 1995, pp. 229–238.

[41] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image style transfer
using convolutional neural networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 2414–2423.

[42] L. A. Gatys, A. S. Ecker, M. Bethge, A. Hertzmann, and E. Shechtman,
“Controlling perceptual factors in neural style transfer,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 3985–3993.

[43] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2016.

[44] J. Ren, X. Shen, Z. Lin, R. Mech, and D. J. Foran, “Personalized image
aesthetics,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2017, pp. 638–647.

[45] C. Rodrı́guez-Pardo and H. Bilen, “Personalised aesthetics with residual
adapters,” in Iberian Conference on Pattern Recognition and Image
Analysis. Springer, 2019, pp. 508–520.

[46] X. Snelgrove, “High-resolution multi-scale neural texture synthesis,” in
SIGGRAPH Asia 2017 Technical Briefs, 2017, pp. 1–4.

[47] L. Gatys, A. S. Ecker, and M. Bethge, “Texture synthesis using
convolutional neural networks,” in Advances in Neural Information
Processing Systems, 2015, pp. 262–270.

[48] A. Dosovitskiy and T. Brox, “Generating images with perceptual
similarity metrics based on deep networks,” in Advances in Neural
Information Processing Systems, 2016, pp. 658–666.

[49] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing
of gans for improved quality, stability, and variation,” in International
Conference on Learning Representations, 2018.

[50] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2019,
pp. 4401–4410.

[51] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “An-
alyzing and improving the image quality of stylegan,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 8110–8119.

[52] A. Mordvintsev, E. Randazzo, E. Niklasson, and M. Levin, “Growing
neural cellular automata,” Distill, 2020, https://distill.pub/2020/growing-
ca.

[53] E. Heitz, K. Vanhoey, T. Chambon, and L. Belcour, “A sliced wasserstein
loss for neural texture synthesis,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
9412–9420.

[54] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[55] A. Shocher, N. Cohen, and M. Irani, ““zero-shot” super-resolution using
deep internal learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[56] Y. Asano, C. Rupprecht, and A. Vedaldi, “A critical analysis of self-
supervision, or what we can learn from a single image,” in International
Conference on Learning Representations, 2019.

[57] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” arXiv preprint
arXiv:1609.09106, 2016.

[58] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein,
“Implicit neural representations with periodic activation functions,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[59] M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Ragha-
van, U. Singhal, R. Ramamoorthi, J. T. Barron, and R. Ng, “Fourier
features let networks learn high frequency functions in low dimensional
domains,” Advances in Neural Information Processing Systems, 2020.

[60] E. Dupont, Y. W. Teh, and A. Doucet, “Generative models as distributions
of functions,” arXiv preprint arXiv:2102.04776, 2021.

[61] A. Shocher, S. Bagon, P. Isola, and M. Irani, “Ingan: Capturing
and retargeting the ”dna” of a natural image,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2019.

[62] S. Benaim, R. Mokady, A. Bermano, and L. Wolf, “Structural analogy
from a single image pair,” in Computer Graphics Forum, vol. 40, no. 1.
Wiley Online Library, 2021, pp. 249–265.

[63] T. R. Shaham, T. Dekel, and T. Michaeli, “Singan: Learning a generative
model from a single natural image,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), October 2019.

[64] T. Hinz, M. Fisher, O. Wang, and S. Wermter, “Improved techniques
for training single-image gans,” in Proceedings - 2021 IEEE Winter
Conference on Applications of Computer Vision, WACV 2021, January
2021, pp. 1300–1309.

[65] A. Shocher, S. Bagon, P. Isola, and M. Irani, “Ingan: Capturing
and retargeting the” dna” of a natural image,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 4492–4501.

[66] V. Sushko, J. Gall, and A. Khoreva, “One-shot gan: Learning to
generate samples from single images and videos,” arXiv preprint
arXiv:2103.13389, 2021.

[67] Y. Vinker, N. Zabari, and Y. Hoshen, “Training end-to-end single image
generators without gans,” arXiv preprint arXiv:2004.06014, 2020.

[68] B. Burley and W. D. A. Studios, “Physically-based shading at disney,”
in ACM SIGGRAPH, vol. 2012. vol. 2012, 2012, pp. 1–7.

[69] L. Shi, B. Li, M. Hašan, K. Sunkavalli, T. Boubekeur, R. Mech, and
W. Matusik, “Match: differentiable material graphs for procedural
material capture,” ACM Transactions on Graphics (TOG), vol. 39, no. 6,
pp. 1–15, 2020.

[70] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky, “Texture
networks: Feed-forward synthesis of textures and stylized images.” in
ICML, vol. 1, no. 2, 2016, p. 4.

[71] P. Henzler, V. Deschaintre, N. J. Mitra, and T. Ritschel, “Genera-
tive modelling of brdf textures from flash images,” arXiv preprint
arXiv:2102.11861, 2021.

[72] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022,
2016.

[73] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proceedings on the
International Conference on Machine Learning, vol. 30, no. 1. Citeseer,
2013, p. 3.

[74] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “Stargan:
Unified generative adversarial networks for multi-domain image-to-
image translation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 8789–8797.

[75] V. Deschaintre, M. Aittala, F. Durand, G. Drettakis, and A. Bousseau,
“Single-image SVBRDF capture with a rendering-aware deep network,”
ACM Transactions on Graphics (ToG), vol. 37, no. 4, 2018.

[76] H. Nam and H. E. Kim, “Batch-instance normalization for adaptively
style-invariant neural networks,” Tech. Rep., 2018.



12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (PRE-PRINT)

[77] K. Kurach, M. Lučić, X. Zhai, M. Michalski, and S. Gelly, “A large-scale
study on regularization and normalization in gans,” in International
Conference on Machine Learning. PMLR, 2019, pp. 3581–3590.

[78] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 2016-Decem, 2016, pp.
770–778.

[79] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[80] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 5967–5976.

[81] J. Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image
Translation Using Cycle-Consistent Adversarial Networks,” Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV),
vol. 2017-Octob, pp. 2242–2251, 3 2017.

[82] M. Janner, J. Wu, T. D. Kulkarni, I. Yildirim, and J. Tenenbaum,
“Self-supervised intrinsic image decomposition,” in Advances in Neural
Information Processing Systems, 2017, pp. 5936–5946.

[83] Y. Yu and W. A. Smith, “Inverserendernet: Learning single image inverse
rendering,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 3155–3164.

[84] Z. Li and N. Snavely, “Learning intrinsic image decomposition from
watching the world,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

[85] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, “Photo-realistic
single image super-resolution using a generative adversarial network,”
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), vol. 2017-Janua, pp. 105–114, 9 2017.

[86] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems, vol. 3, no. January.
Neural information processing systems foundation, 6 2014, pp. 2672–
2680.

[87] L. A. Gatys, A. S. Ecker, and M. Bethge, “Image Style Transfer Using
Convolutional Neural Networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), vol.
2016-Decem, 6 2016, pp. 2414–2423.

[88] E. Schonfeld, B. Schiele, and A. Khoreva, “A u-net based discriminator
for generative adversarial networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 8207–8216.

[89] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431–3440.

[90] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
Tech. Rep., 2015.

[91] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, pp. 8026–8037, 2019.

[92] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” in International Conference on Learning Representa-
tions, 2018.

[93] S. Marcel and Y. Rodriguez, “Torchvision the machine-vision package
of torch,” in Proceedings of the 18th ACM International Conference on
Multimedia, 2010, pp. 1485–1488.

[94] K. Ikeuchi, “Determining surface orientations of specular surfaces by
using the photometric stereo method,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, no. 6, pp. 661–669, 1981.

[95] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
Transactions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[96] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” arXiv preprint arXiv:1706.08500, 2017.

[97] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
Unreasonable Effectiveness of Deep Features as a Perceptual Metric,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 586–595.

[98] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “An-
alyzing and improving the image quality of stylegan,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[99] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsu-
pervised image-to-image translation,” in Proceedings of the European
Conference on Computer Vision (ECCV), September 2018.

[100] C. Chan, S. Ginosar, T. Zhou, and A. A. Efros, “Everybody dance now,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), October 2019.

[101] A. Almahairi, S. Rajeshwar, A. Sordoni, P. Bachman, and A. Courville,
“Augmented cyclegan: Learning many-to-many mappings from unpaired
data,” in International Conference on Machine Learning. PMLR, 2018,
pp. 195–204.

[102] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley, “Neural architecture
search without training,” in International Conference on Machine
Learning. PMLR, 2021, pp. 7588–7598.

[103] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix:
Regularization strategy to train strong classifiers with localizable
features,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 6023–6032.

[104] A. Sinha, K. Ayush, J. Song, B. Uzkent, H. Jin, and S. Ermon, “Negative
data augmentation,” arXiv preprint arXiv:2102.05113, 2021.

[105] J. Wang, Y. Chen, R. Chakraborty, and S. X. Yu, “Orthogonal convolu-
tional neural networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[106] D. A. Hudson and C. L. Zitnick, “Generative adversarial transformers,”
arXiv preprint arXiv:2103.01209, 2021.

[107] T. Dekel, T. Michaeli, M. Irani, and W. T. Freeman, “Revealing and
modifying non-local variations in a single image,” ACM Transactions on
Graphics (ToG), 2015.

[108] X. Li, B. Zhang, P. V. Sander, and J. Liao, “Blind geometric distortion
correction on images through deep learning,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 4855–4864.

Carlos Rodriguez - Pardo is a research engi-
neer at SEDDI and a PhD student at the Univer-
sidad Carlos III de Madrid, Spain (UC3M). His
research interests include computer vision and
artificial intelligence. In 2018, he was awarded
a distinction at the MSc in Artificial Intelligence
at the University of Edinburgh. He completed a
double BSc degree in Computer Science and
Business Administration (UC3M) in 2017. He was
a researcher at the Applied Artificial Intelligence
Group (UC3M), working in AR applications (2013)

and in data science problems (2016-2017). Carlos has served as a
reviewer to conferences and journals, such as CVPR, ICCV, BMVC,
ICLR, or TVCJ.

Elena Garces received her PhD degree in Com-
puter Science from the University of Zaragoza in
2016. During her PhD studies, she interned twice
at the Adobe (San Jose, and Seattle, USA). Her
thesis dissertation focused on inverse problems
of appearance capture, intrinsic decomposition
from single images, video, and lightfields. She
was post-doctoral researcher (2016-2018) at
Technicolor R&D (Rennes, France) working on
lightfields processing, and post-doctoral Juan de
la Cierva Fellow (2018-2019) at the Multimodal

Simulation Lab (URJC). Since 2019 she is Senior Research Scientist
at SEDDI, leading the optical capture and rendering teams. She has
published over 15 papers in top-tier conferences in the areas of computer
graphics, vision, and machine learning, as well as authored six patents.
Elena serves regularly as reviewer or PC-Member in top-tier computer
vision and graphics conferences and journals such as SIGGRAPH,
CVPR, ICCV, IJCV, TVCG, or EGSR.


	Introduction
	Related work
	Texture Synthesis
	Texture Tileability
	Deep Internal Learning

	Overview
	Self-Supervised Texture Stack Synthesis using Adversarial Expansion
	Network Architecture

	Tileable Texture Stack Sampling
	Latent Space Tiling
	Discriminator-guided Sampling

	Implementation Details
	Experiments
	Generator G Design 
	Inter-map Consistency
	Loss Function Ablation Study

	Results and Comparisons
	Conclusions and Future Work
	References
	Biographies
	Carlos Rodriguez - Pardo
	Elena Garces


