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a b s t r a c t

Neural material representations are becoming a popular way to represent materials for rendering.
They are more expressive than analytic models and occupy less memory than tabulated BTFs. However,
existing neural materials are immutable, meaning that their output for a certain query of UVs, camera,
and light vector is fixed once they are trained. While this is practical when there is no need to
edit the material, it can become very limiting when the fragment of the material used for training
is too small or not tileable, which frequently happens when the material has been captured with a
gonioreflectometer. In this paper, we propose a novel neural material representation which jointly
tackles the problems of BTF compression, tiling, and extrapolation. At test time, our method uses a
guidance image as input to condition the neural BTF to the structural features of this input image.
Then, the neural BTF can be queried as a regular BTF using UVs, camera, and light vectors. Every
component in our framework is purposefully designed to maximize BTF encoding quality at minimal
parameter count and computational complexity, achieving competitive compression rates compared
with previous work. We demonstrate the results of our method on a variety of synthetic and captured
materials, showing its generality and capacity to learn to represent many optical properties.

© 2023 Published by Elsevier Ltd.
o
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1. Introduction

A common approach to modeling real-world spatially-varying
aterials in computer graphics is through the use of Bidirectional
exture Functions (BTFs). This type of representation models the
ense optical response of the material, and is more general than
nalytic representations such as microfacet SVBRDF. However,
TFs can occupy large amounts of memory. Recently, neural
aterial representations are being proposed as a learning-based
lternative to tabulated BTFs, providing a more compact solution
hile keeping the flexibility and generality of BTFs.
Creating digital representations of real material samples re-

uires using an optical capture device, such as a gonioreflectome-
er, a smartphone [1], or a flatbed scanner [2]. During the process,
everal choices must be made. First, it is important to select a
atch of the material that contains enough spatial variability.
econd, a process – automatic or manual – must be found to
roduce a tileable material that can be used to create seamless
D renders. Finally, resources must be allocated for storage as
eeded. Making these choices when dealing with implicit or
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tabulated representations, such as in BTFs or neural materials,
is particularly crucial. Once these representations are trained or
captured, they cannot be easily modified and it is only possible
to query them using the UVs, light, and camera vectors.

In this paper, we propose a novel neural material represen-
tation that addresses these issues. Unlike existing neural ap-
proaches that are immutable once trained [3–6], our model can
be queried at test time with a guidance image that conditions
the neural BTF to the structure provided by the guidance image.
Our approach resembles synthesis by example and procedural
processes, and can be used to extrapolate BTFs to large material
samples, as well as to easily create tileable ones. Furthermore, our
method achieves better compression rates than previous work on
neural BTF representations.

To achieve this, we present a novel method that works at
two steps. In the first step, we condition the neural BTF using a
guidance image as input. To this end, we use an autoencoder that
outputs a high-dimensional latent representation of the material,
a neural texture, which jointly encodes reflectance and structural
properties. In the second step, the UV position of the latent rep-
resentation, along with the camera and light vectors, are decoded
by a fully-convolutional sinusoidal decoder, a neural renderer to
btain the RGB values. Using a single BTF as input, we train the
etwork end-to-end using a custom training procedure, loss func-

ion, and data augmentation policy. This policy, inspired by recent
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ork on attribute transfer [7], allows the autoencoder to en-
ode the relationship between structural features and reflectance,
nabling the propagation of the BTF to novel input guidances.
nce trained, the novel input guidances may come from the same
aterial, a different material, or a structural pattern. An input
uidance of the same material can be used to extrapolate the
TF to larger samples or create tileable BTFs, provided the input
uidance is tileable. If the input guidance is a structural pattern,
he local features can be used to synthesize novel materials.

In summary, we propose the following contributions:

• The first neural BTF representation with conditional input
that can be used to extrapolate BTF measurements, easily
create tileable BTFs, and synthesize novel materials.

• We show how to leverage our system for rendering large-
scale and tileable neural BTF generation using measure-
ments captured with small portions of the material.

• We demonstrate that our method works with synthetic and
captured materials of diverse optical properties, including
colored specular or anisotropy.

We provide additional results, supplementary materials, and
mplementation details at our project website.

. Related work

An accurate method for representing the optical properties of
aterials is through Bidirectional Texture Functions (BTFs) [8].
TFs are 6D functions that characterize all possible combinations
f incoming and outgoing light and camera directions for the
D spatial extent of a material. Although they are successful in
epresenting materials, they have a major drawback in terms of
emory requirements. Therefore, BTF compression has been a
ajor research topic [9]. Non-neural approaches used dimension-
lity reduction techniques such as Principal Component Analy-
is (PCA) [10–12], vector quantization [13], or clustering [14].
owever, these approaches were recently surpassed by neural
odels [15] due to their flexibility and superior capacity to learn
on-linear functions.

eural BTFs. Rainer et al. [3] proposed the first method to use
eep autoencoders to compress BTFs, surpassing PCA [12] on
aptured BTFs. However, this approach required training a sin-
le neural network per material. To address this limitation, a
ater work by the same authors [5] proposed a generalization
f this idea in which a single network was able to generalize
o a variety of materials. Although these methods were very
ffective for compressing flat materials, they had some limitations
hen it came to modeling materials with volume. In their work,
uznetsov et al. [4] improved the quality of neural materials by
ntroducing a neural offset module that captures parallax effects.
urther, they method also allowed for level-of-detail though MIP
apping by training a multi-resolution neural representation.
owever, grazing angles and silhouette effects remained a chal-
enge for this approach. In a subsequent work, Kuznetsov et al. [6]
xplicitly trained the network using queries that span surface
urvatures, effectively handling these cases. Representing fur,
abrics, and grass with neural reflectance fields was explored
y Baatz et al. [16] who proposed a representation that jointly
odels reflectance and geometry.
All of these approaches share the idea of querying neural

aterial using UVs, camera, and lighting vectors, but do not
rovide any functionality for modifying the material once the
etwork is trained. In contrast, our approach can take a guidance
mage as input, which conditions the output to generate material

ariability.

240
Material synthesis and tiling. Texture synthesis is a long-standing
problem in the field of computer graphics. The goal is to recon-
struct a larger image given a small sample, leveraging the struc-
tural content and internal statistics of the input image. This con-
cept has been used for synthesizing single images, BTFs, and full
material models. For images, the most common strategies include
PatchMatch [17], texture transport [18], point processes [19,20],
or neural networks [21–24]. BTF synthesis, however, has re-
ceived less attention. Steinhausen et al. [25,26] extrapolated BTF
captures to larger material samples using non-neural texture
synthesis methods. For full materials, Li et al. [27] captured the
appearance of materials by first estimating their BRDF and then
synthesizing the high-resolution micro-structure from a dataset
of measured SVBRDFs. Nagano et al. [28] measured microscopic
patches of the skin and used a convolutional filter to propa-
gate the measurements to a spatially-varying texture. Deschain-
tre et al. [29] used an autoencoder to propagate SVBRDFs to large
material samples. Also recently, Rodriguez-Pardo and Garces [7]
propagated any kind of visual attribute having a single image as
guidance. Their approach shares some similarity to ours, although
they transfer 2D image attributes, while we transfer the full BTF.

Procedural models [30–32] are nowadays very successful for
generating tileable materials. Thanks to the use of a tileable tem-
plate, these methods adjust the generated image to the features
available in the template. As we show, our approach can also
work with a binary template as input. However, guaranteeing
predictable outputs given this kind of input is out of the scope
of our technique, which can transfer BTF measurements having
as input a guidance image of the same material.

Other neural representations in rendering. Limited to BRDFs, neu-
ral networks trained with adaptive angular sampling have been
explored to enable importance sampling [33], needed for Monte
Carlo integration. Deep latent representations also allow for BRDF
editions. For example, Hu et al. [34] demonstrate that autoen-
coders can outperform classic PCA for the purpose of editing.
Other applications of neural encodings in rendering are numer-
ous. For instance, they have been used for scene prefiltering [35],
where geometry and materials are simplified to accommodate the
LoD of the scene using a voxel-based representation and trained
latent encodings. For anisotropic microfacets, Gauthier et al. [36]
propose a cascaded architecture able to adjust the material pa-
rameters to the MIP mapping level. Encoding light transport using
neural networks for real-time global illumination has also been
explored [37,38], showcasing promising results.

3. Method

We present an overview of our approach in Fig. 1, where we
show our inference and training pipelines. Our goal is twofold:
First, find a compact representation for a BTF through the use
of neural networks. Second, enable the extrapolation of the BTF
according to guidance images used as input. In Section 3.1 we
describe our inference pipeline and neural network, and in Sec-
tion 3.2 our training process. Section 4 contains specific imple-
mentation details and design of the neural networks.

3.1. Inference

Our neural network is composed of three modules: an au-
oencoder A, a neural texture T ∈ RH×W×D, and a renderer R.
The renderer R(T (u, v), ωo, ωi) = RGB takes as input the feature
vector at the (u, v) coordinates of the neural texture T , the view
ωo and light ωi positions, and returns an RGB value. R acts as a
conventional BTF and can be used as such in any render engine.

An input guidance image, G ∈ RH×W×3, is used during infer-

ence to condition the generation of the neural texture T . This
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Fig. 1. An overview of our neural BTF inference and training processes. Top-Inference: Using a guidance image G ∈ RH×W×3 , we use our trained autoencoder
o generate the Neural Texture A(G) = TG ∈ RH×W×D , which preserves the spatial resolution of the input image but represents a higher-dimensional learned
epresentation. This Neural Texture TG , along with the trained renderer R, can be queried as a regular BTF, using UVs, and target camera and light positions for
egular rendering. Bottom-Train: During training, following previous work on photometric data augmentation [7], we randomly select an input view Vω̃o,ω̃i and a
arget Vωo,ωi . This allows the model to generalize to novel light or camera conditions and acts as a regularizer. To both views, we apply random rescale and cropping.
hen, only to Vω̃o,ω̃i , we randomly apply hue variations, gaussian blur, and noise, and feed it to the autoencoder, which returns a 2D latent representation of the
aterial. A fully-convolutional decoder with sinusoidal activations receives both this latent space and the target ωo, ωi camera and light angles, and estimates V̂ωo,ωi .
his output is compared with Vωo,ωi using a multifaceted loss function.
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t

onditioning allows us to propagate the learned reflectance to
ovel guidance images that can be: a larger sample of the same
aterial, a different material, or a structural image. In the simpler
ase, the guidance image comes from the BTF used for training,
nd our process is equivalent to previous work [3,4].
The autoencoder A takes the guidance image G ∈ RH×W×3

s input and outputs a neural texture T ∈ RH×W×D with the
ame size H × W as the input guidance image but with more
atent dimensions D. As a result, each pixel in the guidance image
as a higher-dimensional neural representation in T . Because it
s trained without explicit supervision, this latent representation
an capture the reflectance and structural patterns automatically.
uznetsov et al. [4] also used a latent neural representation of the
aterial, however, lacking the initial autoencoder their approach
annot synthesize novel BTFs without retraining, while our condi-
ioning module allow us to generate novel BTFs during test time.
he autoencoder and the renderer are neural networks trained
ointly, using an end-to-end image-to-image approach describe
elow.

.2. Training

Fig. 1 (bottom) illustrates our training process. It has two
bjectives: First, equivalent to regular BTF encoding, we aim to
ind the mapping between camera direction ωo, light direction
i, and output slices of the BTF: (ωo, ωi) → Vωo,ωi ∈ BTF.
econd, we aim to condition the synthesis process with an input
uidance image, G. To this end, for training, we feed the model
ith images, Vω̃o,ω̃i , which are randomly sampled from the BTF,
nd are subject to additional data augmentation processes. This
xtensive augmentation process guarantees invariance to differ-
nt input variations during test time, like camera or illumination
onditions, while keeps consistency of the outputs.

oss function design. Our loss function, that compares ground
ruth slices Vωo,ωi with generated ones R(A(f (Vω̃o,ω̃i )), ωo, ωi), is
weighted sum of three terms: a pixel-wise loss, a style loss, and
frequency loss,

= λ L + λ L + λ L (1)
L1 1 style style freq freq

241
he main driver of our loss is the pixel-wise norm L1. L1 produces
harper results than higher-order alternatives, such as L2 [7,39].
ollowing [4], we apply a log(x + 1) compression to improve the
odel results on high dynamic range. This compression is only
one to the pixel-wise component of the loss function. Inspired
y recent work on texture synthesis, capture and transfer [2,24,
2,40,41], we introduce a Lstyle loss to help the model generate
igher quality and sharper results. Further, to mitigate the spec-
ral bias of convolutional neural networks and help ameliorate
he results further, we also introduce a focal frequency loss into
ur learning framework [42]. This combination of loss functions
roves effective for our problem, without the need for complex
dversarial losses which could reduce efficiency or destabilize
raining.

ata augmentation. We train our models using a comprehen-
ive data augmentation policy aimed at achieving high quality
eflectance propagation, increasing performance and generaliza-
ion, and allowing for generation of multiple resolution materials
t test time. We build upon recent work on material transfer [7]
nd use images of the material taken under different illumination
nd viewing conditions as inputs to our autoencoder. This helps
t generalize to novel capture setups, which allows for multiple
pplications we describe on Section 6. In particular, we use every
mage available on the input BTF, selected uniformly at random
or each element in each batch during training. As in [7], we also
se random rescaling, which helps the model generalize to new
cales, and build neural materials of multiple resolutions at test
ime, as we describe on Section 6.3. Inspired by recent work on
mage synthesis [7,24,43], we use random cropping, which helps
eneralization by effectively increasing the dataset size. Finally,
e extend the color augmentation policy in [7] with random
ue changes across the entire color wheel, and introduce random
aussian noise and blurs to the input images, to help it generalize
urther, as proposed in [2].

. Model design and implementation

We provide extensive implementation details for model sizes,
raining and data generation on the supplementary material.



C. Rodriguez-Pardo, K. Kazatzis, J. Lopez-Moreno et al. Computers & Graphics 114 (2023) 239–246

[
b
a

W
h

R
a
l

Fig. 2. Some tileable neural materials achieved with our method. On the top row, we show a slice of the BTF used to train a NeuBTF representation. With the
tileable guidance images shown on the second row, we propagate the neural texture using our autoencoders. These neural textures can be rendered to generate
realistic images (third). We provide closeups on the bottom row. In the cases where the guidance image covers a larger area than the training crop, we highlight
the training surface area as a green inset.
u

Fig. 3. Qualitative results on a variety of BTFs, from different sources. From
left to right, we show results on a material from the UBO [12] BTF dataset,
the UTIA [54] BTF dataset and two synthetic materials rendered from Substance
SVBRDFs.

Autoencoder. For the autoencoder, we use a lightweight U-Net
44] with a few modifications to tailor it for our problem. Inspired
y recent work on CNN design, we leverage ConvNext [45] Blocks
cross our model, with depth-wise convolutions using 5 × 5 ker-

nels. We empirically observe that ConvNext blocks achieve higher
quality structural editions at a lower parameter count than vanilla
U-Net blocks. To further help convergence and preserve details in
the input images, we use residual connections [2,46,47] in every
convolutional block of the model. We use 1 × 1 convolutions on
the skip connections and residual scaling [48]. As in [45], we use
Layer Normalization [49] and GELU non-linearities [50]. On the
bottleneck of the model, we introduce an attention module [51]
to help the model learn longer-range dependencies. To avoid
checkerboard artifacts [52], we use nearest neighbors interpola-
tion for upsampling. Inspired by recent work on tileable material
generation [32], we use circular padding throughout the model.

e initialize its weights using orthogonal initialization [53], which
elps avoiding exploding gradients.

enderer. For the renderer, we build upon SIREN [55] MLPs, with
dditional modifications to enhance its performance for our prob-
em. We use 1 × 1 convolutions instead of vanilla linear layers,
242
to allow for end-to-end training using 2D images. Further, we
introduce Layer Normalization [49] before each sinusoidal non-
linearity, which stabilizes training. Finally, inspired by [56], we
use residual connections [46], to help preserve the information
of the input vector across the decoder layers. Model weight
initialization follows [55]. With sinusoidal activations, we observe
significantly higher reconstruction quality and training dynamics
than with ReLU [57] MLPs, which are common for BTF com-
pression [3–5]. Because the network is fully-convolutional, it can
take as input feature vectors of any size. This is very convenient
for our use cases when the input guidance image have a size
different from the size of the original BTF used to train it. The
renderer can be evaluated very efficiently in GPU, at an average
of 2.514e−4

± 4.48e−5 ms per sample.

5. Evaluation

5.1. Qualitative and quantitative analysis

We evaluate our method on materials from different sources
including acquired BTFs from [12,54], and rendered BTFs from
procedurally generated and scanned SVBRDFs. In Fig. 2, we show
examples of the results of NeuBTF for a variety of materials
with highly complex structures and reflectance properties, like
colored specular (first column) or anisotropy (last). We show
some additional results in Fig. 3 for materials of different datasets.
As shown, our model achieves high quality reconstructions re-
gardless on the type of data source. In Table 1, we show the
reconstruction error for the same materials, averaged across the
full directional space, for a variety of pixel-wise and perceptual
metrics.

Finally, in Fig. 4, we show a colored visualization for a few
channels of the latent neural texture T found for a variety of ma-
terials. Because the values for the neural texture are unbounded,
to each channel c ∈ T , we standardize them to 0 mean and
nit variance, and apply a sigmoid(c) =

1
e1−c+1

non-linearity
to make the maps comparable. Without any explicit training,
the models learn to separate distinct parts of the material. For
example, the model finds distinct latent spaces for warp and
weft yarns on woven fabrics, or separation between color and
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Fig. 4. A selection of latent channels learned by NeuBTF for a variety of materials. We use a colorspace to help visualization. Without explicit supervision, the model
internally learns semantically meaningful latent spaces. For instance, in the second example on the left, the two leftmost latent spaces encode geometry, while the
other two encode the two distinct colors of the printed pattern over the yarns.
Table 1
Average (± std.) reconstruction error across the full dimensional space for materials of different
datasets, measured using pixel-wise and perceptual metrics.
Material fabric01 [12] fabric03 [54] ceramic (Subst.) embroidery (Subst.)

PSNR ↑ 26.58±1.820 27.73±4.711 29.19±2.111 28.79±1.831
SSIM [58] ↑ 0.710±0.108 0.729±0.142 0.819±0.110 0.652±0.156
LPIPS [59] ↓ 0.451±0.041 0.404±0.054 0.270±0.075 0.341±0.135
FLIP [60] ↓ 0.391±0.047 0.426±0.105 0.365±0.065 0.391±0.115
Table 2
Number of trainable parameters in the decoders and amount of latent texture channels for different
neural BTF compression algorithms. We use Torchinfo [61] for this analysis. Note that exact
comparisons are challenging, as [4] optimizes a multi-level texture pyramid and [5] learns a latent
vector which can encode novel materials. For neither our method nor [3,5], we count the parameters
in the encoders, as they are not needed for using the materials on rendering systems.
Method NeuBTF (ours) NeuMIP [4] Rainer 2019 [3] Rainer 2020 [5]

Decoder Parameters 3011 3332 35725 38269
Texture Channels 14 14 14 38
geometric patterns. This disentanglement provides clues on why
the material propagation is possible, and suggests potential future
research directions for fine-grained neural material edition.

5.2. Compression comparisons with previous work

In Table 2, we show the number of trainable parameters on
he decoders of different neural BTF compression algorithms. As
hown, our model is competitive with previous work in terms of
rainable parameters. This is achieved as we use more complex
oss functions than previous work, which help regularize the
odels, and because our sinusoidal MLP achieves higher quality

econstructions for natural signals than ReLU MLPs, as shown
n [55]. NeuMIP [4] uses smaller MLPs, however, they require
n additional decoder for their neural offset module, which helps
hem encode parallax effects (See Fig. 5), for which our model
truggles. Our decoder has one order of magnitude fewer param-
ters than [3,5], however, the method in [5] provides the benefit
f fast encoding of new materials, while ours requires a different
odel for each new material.

.3. Limitations

As we show in Fig. 5, our model struggles with materials
ith strong displacement. While our method provides accurate
ncodings on viewing angles close to the material surface, it
243
cannot accurately encode grazing angles for such extreme cases.
Displacement maps translate the geometric position of the points
over the surface, breaking the underlying assumptions behind our
neural texture. NeuMIP [4] solves this issue by explicitly modeling
parallax effects with a neural offset module. While we did not
observe that such extension was needed for acquired BTF data,
like the UBO2014 [62] dataset, introducing a similar module into
our editable neural material framework is an interesting future
research direction to increase its generality.

6. Applications

6.1. Reflectance propagation and tileable neural BTFs

Many material reflectance acquisition devices are limited in
the surface dimensions they can digitize. This hinders their ap-
plicability to many real-world materials, which exhibit variations
that cannot be captured at such small scales. Further, in many
applications like SVBRDF acquisition, obtaining larger samples of
the material improves realism and helps tileable texture synthe-
sis. In this context, previous work on BTF reflectance compression
inherit the surface area limitations of the capture devices used to
generate their training data. Our method can easily be applied for
reflectance propagation. We build upon the work of Rodriguez-
Pardo and Garces [7] and leverage our encoder to propagate the
neural texture optimized using a small portion of the material
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Fig. 5. A failure case of our method. Compared to NeuMIP [4], which explicitly
models parallax effects, our model struggles to accurately encode materials with
strong displacements, as this synthetic cable knit from Substance3D. For this
type of materials, NeuBTF accurately encodes orthogonal viewing angles (top
row), however, it struggles at grazing angles (bottom row).

(e.g. a 1 × 1 cm capture) to a larger portion of the same material,
represented with a guidance image captured using a commodity
evice like a flatbed scanner. Because our model is trained using
large amount of lighting conditions, as in [7], the propagation

s invariant to how the images are illuminated. We show results
f such pipeline in Fig. 2. For instance, on the last row, we show
n anisotropic and specular Silver Jacquard fabric, for which we
enerated a BTF by rendering a 1 × 1 cm SVBRDF. This small
rop cannot represent the complex pattern in the fabric, which
e show on the guidance image, which covers a 10 × 10 cm
rea. Using our encoder, we propagate the neural material to this
uidance image, generating a new, high-resolution, latent space
hich we can render, enabling realistic material representations
ith a reduced digitization cost. This propagated neural material
as a 2000 × 2000 texels resolution, and it requires no re-training
uring test time.
Relatedly, our propagation framework can also be easily lever-

ged for generating tileable BTFs. Given any guidance image of
he material, we can generate a tileable version of it, either
sing manual editions by artists or automatic algorithms [24,63–
5]. With this tileable input guidance, we can use our autoen-
oder A to propagate the neural texture T , effectively generating
ileable BTFs, as we show in Fig. 2. This propagation algorithm
an leverage state-of-the-art algorithms for tileable texture syn-
hesis without any modification of our material model or train-
ng framework. Tileable BTFs were not achievable with previous
pproximations and this simple pipeline has the potential of
nabling novel applications of this type of material representation
n rendering scenarios.

.2. Structural material edition

Besides propagating BTF measurements to larger portions of
he material, NeuBTF allows for generating novel materials using
tructural editions. Given a trained NeuBTF and a guidance image
epresenting some particular target structure, we can propagate
he neural texture to this guidance image, generating high-quality
eural materials which preserve the structure of the guidance
mage and the reflectance properties of the trained neural mate-
ial. This pipeline allows for easily generating multiple different
eural materials without the need for retraining. As we show in

ig. 6, this propagation method works for many types of input
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Fig. 6. Examples of structural editions allowed by our method on a variety of
materials. On the leftmost column, we show guidance images, which represent
structures into which we transfer the neural BTF measurements illustrated on
the top row. As shown, our method can effectively propagate BTF measurements
into many material and structure types, using as guidances either synthetic or
real images. The first three materials (leather11, carpet07, fabric01) are taken
from UBO 2014 [62], the linen material is rendered from a captured SVBRDF,
while the ceramic material is rendered from an artistic material taken from
Substance3D. We show renders generated using θv = θl = 0. Additional results
are provided on the supplementary material.

guidances, including vector black and white images, procedu-
rally generated textures, or real photographs of materials and
textures. We show results on acquired BTFs and from synthetic
BTFs, rendered from scanned and manually generated SVBRDFs.
As shown, our propagation frameworks provides high-quality
material editions, even for very challenging cases, like the circles
pattern.

6.3. Multi resolution neural materials

Another useful application enabled by our method is the
generation of materials at different resolutions. Unlike previous
work [4], which explicitly optimizes a pyramid of levels of detail
during training, we can generate materials at any resolution
at test time without introducing any additional complexities to
our material representation. Because we train our models using
random rescales as a data augmentation policy, they are equiv-
ariant to rescales of its input guidance images G ↓: R(A(G)) ↓=

R(A(G ↓)). As such, we can generate any continuous resolution
for a particular BTF by downsampling the guidance image to
the target resolution and propagating its neural texture, as we
illustrate in Fig. 7. Note that this algorithm only guarantees
accurate results for the rescaling ranges that we use during data
augmentation.

7. Conclusions

We have presented a learning based representation for mate-
rial reflectance which provides efficient encoding and powerful
propagation capabilities. Our method introduces input condi-
tioning into neural BTF representations. This allows for multi-
ple applications which were not possible with previous neural
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Fig. 7. Our method naturally enables for the generation of different resolutions
for the neural materials. We show the input to the autoencoder (top row), the
rendered material at θc = 75, θl = 60, φc = φl = 0 (middle row), and the ground
ruth image at those positions (bottom), at different resolutions (columns). We
chieve this by downsampling the guidance image G fed into the autoencoder
odule, which returns an accurately downsampled latent space, thanks to our
ata augmentation policy applied during training. The rightmost column lies
eyond the ranges in which we train the model, however, the results are still
omewhat plausible.

odels, including BTF extrapolation, tiling and novel material
ynthesis through structure propagation. Our method builds upon
ecent work on neural fields, network design and data augmenta-
ion, showing competitive compression capabilities with previous
ork on neural BTF representation. Through multiple analyses,
e have shown the capabilities of our method on a variety of ma-
erials with different reflectance properties, including anisotropy
r specularity, as well as effectively handling either synthetic and
cquired BTFs.
Our method can be extended in several ways. The most im-

ediate extension is to allow for materials with strong parallax
ffects due to displacement mapping or curvature, as in [4,6]. Our
epresentation is limited to opaque materials. Extending them to
andle translucent or holed surfaces would increase their realism
n materials like thin fabrics or meshes. Further, our method
ould be extended to allow for hyperspectral BTF data [66], but
aptured data is scarce. Besides, recent work on neural BRDF
epresentations [33,37,67] and generative models [68] suggests
promising research direction: Learning to sample from neural
TFs, using invertible neural networks. While these may intro-
uce challenging complexities to the models, they could provide
fficient representations for Monte Carlo rendering using impor-
ance sampling. Further, building upon recent work on SVBRDF
apture [2,32], BRDF sampling [69] and BTF compression [5],
t could be possible to learn a prior over neural BTFs with a
enerative model. This should help in capturing more efficiently
he data needed for generating these assets, as well as generating
ew materials and interpolating between them. Finally, editing
emantic and reflectance properties in neural fields is an active
rea of research [70–74]. While our method introduces structural
dition into neural BTF representations, it is not capable of editing
articular semantic properties, such as albedo or specularity. Ex-
ending our edition capabilities to more fine-grained parameters
s an interesting research avenue. We hope our method inspires
uture research on neural material representations.
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