UMat: Uncertainty-Aware Single Image High Resolution Material Capture

CVPR 2023 Paper ID 7763 TUE-PM-156

SEDDI

1-Minute Summary

Introduction

UMat

Uncertainty Quantification and Active Learning

UMat: Uncertainty-Aware Single Image High Resolution Material Capture

CVPR 2023 Paper ID 7763 TUE-PM-156

SEDDI

Introduction

Real World Materials

Material Capture

Commodity Hardware

Custom Devices (Gonio Reflectometers, TAC7)

Scalability, Speed

Cost, Quality

Material Capture

UMat

GAN tailored for material digitization

High Resolution SVBRDF (up to 1000 ppi)

Flatbed Scanners as Capture Device

Accurate, artifact-free, sharp maps

Uncertainty Quantification

Uncertainty in Single Image Material Estimation

UMat

Flatbed Scanners

Flatbed Scanners

Estimating Reflectance from Microgeometry

Input

Estimated

$$f_{l,v}(\mathbf{M}, \mathbf{X}) = \frac{\mathbf{X}}{\pi} + s_{l,v}(\mathbf{M}) \in \mathbb{R}^{x \times y}$$

X: Albedo (Input)

M (G(X)): Normals, Roughness, Specular

Dataset

UMat: Dataset

UMat: Dataset

Towards Material Digitization with a Dual-scale Optical System. Garces et al (TOG, Proc. SIGGRAPH 2023).

Model Design and Training

Training

Generator Architecture

Losses

$$\mathcal{L}_{G} = \underbrace{\sum_{i} \lambda_{i} \mathcal{L}_{pixel_{i}}}_{i} + \underbrace{\lambda_{adv} \mathcal{L}_{adv}}_{i} + \underbrace{\lambda_{style} \mathcal{L}_{style}}_{i} + \underbrace{\lambda_{freq} \mathcal{L}_{freq}}_{i}$$
$$\mathcal{L}_{D} = \mathcal{L}_{\mathcal{D}_{enc}} + \mathcal{L}_{\mathcal{D}_{dec}} + \underbrace{\lambda_{cons} \mathcal{L}_{\mathcal{D}_{dec}}^{cons}}_{\mathcal{L}_{adv}} = \log(\mathcal{D}_{enc}(\mathbf{G}(\mathbf{X})) + \log(\mathcal{D}_{dec}(\mathbf{G}(\mathbf{X})))$$

Pixel-wise norm for accurate maps

Style loss increases sharpness and perceptual quality

Pixel-wise and global adversarial losses for local and global quality

Frequency loss allows for better learning high-frequency patterns

Evaluation

BRDF Evaluation Error

$$\mathcal{L}_{\text{BRDF}} = \frac{1}{|xy|} \sum_{xy} \sqrt{\frac{1}{|S|}} \sum_{(l,v)\in S} \sqrt[3]{\cos^2(\theta_l)} \left(f_{l,v}(\mathbf{M}_{GT}, K) - f_{l,v}(\hat{\mathbf{M}}, K) \right)^2$$

Average render distance between M_{GT} and estimated \widehat{M}

We render $f_{l,v}$ the SVBRDFs at a set of optimized light and view positions

We use a grayscale albedo K to isolate the impact of the other parameters

Perceptually Motivated: Specular Peak attenuation, Cosine Weighting

Artifact Detection

Mutual information for automatic artifact detection

$$\mathcal{H}(\mathbf{I}) = \frac{1}{|xy|} \sum_{xy} \frac{1}{|d|} \sum_{d=\{\uparrow,\downarrow,\leftarrow,\rightarrow\}} \mathcal{H}(\mathbf{I})$$

$$\|F_{\text{Box}}(\mathbf{I}) - F_{\text{Box}}(\mathbf{I}^d)\|_1$$

UMat: Qualitative Ablation

Latent Embeddings

Uncertainty Quantification

Uncertainty Estimation: Our Approach

MLPs

Uncertainty Estimation: Our Approach

$$\sigma_{\text{BRDF}} = \frac{1}{|xy|} \sum_{xy} \log\left(\frac{1}{|S|} \sqrt{\sum_{(l,v) \in S} \sqrt[3]{\sigma_{l,v}} \{f_{l,v}(\mathbf{U}_j, K) \cos(\theta_l)\}_{j=1}^N}\right)$$

We sample a set (U) of estimations using Monte Carlo Dropout on the MLPs.	We render $f_{l,v}$ using a grayscale albedo K
Perceptually Motivated: Specular Peak attenuation, Cosine Weighting	Variance across renders generated at a set of light (I) and cameras (v) positions

Application: Active Learning

Results

UMat: Comparisons with Previous Work

Uncertainty Quantification: Results

Uncertainty Quantification: Results

Uncertainty Quantification: Results

Uncertainty

Active Learning: Results

Render

estimation (2x2 cm crop) **1000 PPI SVBRDF**

Render

Failure Cases

Input Image Ground Truth Estimation

Conclusions

Generative model tailored for high resolution material digitization

Flatbed scanners provide very high resolution inputs

Microgeometry is a powerful cue for reflectance estimation

First uncertainty quantification method for SVBRDF estimation, increasing robustness and data effiency

Future Work

Estimate albedos

Expand material model: Transmittance, anisotropy

Increase dataset size and variety

Allow for other scanning devices

Additional Information

https://carlosrodriguezpardo.es/projects/UMat/

UMat: Uncertainty-Aware Single Image High Resolution Material Capture

CVPR 2023 Paper ID 7763 TUE-PM-156

SEDDI

