
UMat: Uncertainty-Aware Single Image High Resolution Material Capture
Supplementary Material

Carlos Rodriguez-Pardo1,2 Henar Dominguez-Elvira1,2 David Pascual-Hernandez1 Elena Garces1,2

1SEDDI, Spain 2Universidad Rey Juan Carlos, Spain

1. Overview
In this supplementary material, we aim to provide exten-

sive results, implementation details and further analysis that
are not present on our main paper. We accompany this doc-
ument with a video, with high resolution images to illustrate
the capabilities of our material estimation method.

We divide this supplementary material in different sec-
tions, as follows:

• On Section 2, we provide exhaustive implementation
details for our model design and training configuration,
as well as our metrics.

• On Section 2.4, we provide details on the configura-
tions we used to capture the materials.

• On Section 2.5, we provide details on how we per-
formed comparisons with previous work.

• On Figs. 1 and 2, we illustrate our training dataset.

• On Figs. 3 and 4, we provide exhaustive diagrams of
our generator and discriminator architectures.

• On Figs. 5 to 11, we provide additional results of our
ablation study of our model architecture.

• On Figs. 12 and 13, we provide additional results of
our uncertainty metric.

• On Fig. 14, we provide additional results of our active
learning experiment.

• On Figs. 16 to 18, we show results of our model ro-
bustness when we apply different degradations to the
input images. To ease comparisons, we use the same
subset of materials in our test set. Our model is robust
to many types of input degradations.

• On Fig. 19, we show results of our model on datasets of
previous work, including smartphone images, material
graphs and captured BTFs.

• On Tabs. 1 to 11, we provide additional comparisons
with previous work for a set of materials on our test
set.

1



2. Implementation Details
2.1. Model Design

Our model is trained using a GAN framework. In this
section, we detail our design choices for the generator and
discriminator architecture.

Generator For the generator, we use a U-Net [18] model,
with a few modifications design to maximize its efficiency,
robustness, and generalization capabilities. We specify the
full model architecture and layer sizes on Figure 3. We use
residual connections [2, 3, 7] in every convolutional block
of the model, for better training convergence and preserv-
ing details present in the input images. We use 1 × 1 con-
volutions on the skip connections. Further, to maximally
preserve the appearance and characteristics of every tar-
get map, we use a single decoder for each. This has been
proposed in different applications, including intrinsic im-
ages, material capture and texture synthesis [2, 6, 17, 28].
To improve the results and enable our uncertainty met-
ric, we append a pixel-wise MLP to each decoder in the
model, with Dropout [21] regularization. Using MLPs af-
ter the decoders has been previously explored for material
capture [1]. We use Group Normalization [26] (with 16
groups per layer) and SiLU [4] non-linearities throughout
the model. Each convolutional block in the encoder is en-
hanced with a lightweight Linear Attention module [22],
with 4 attention heads, each with a dimension of 32 hidden
units. On the bottleneck, we use a lightweight MobileViT
Transformer block [11], with 128 hidden dimensions for the
self-attention and MLPs, 4 layers and a kernel size of 3. We
use a Dropout rate of 0.2. We use transposed convolutions
for upsampling. Every other implementation detail in the
model (strides, bias, poolings) follow [18].

Discriminator For the discriminator [19], we also use a
U-Net [18] model, with a few modifications to improve its
performance as a discriminator. We specify the full model
architecture and layer sizes on Figure 4. As in the generator,
we use residual connections [2, 3, 7] in every convolutional
block of the model, for better training convergence and pre-
serving details present in the input images. We use Spectral
Normalization [13] and SiLU [4] non-linearities throughout
the model. On the bottleneck, we use a lightweight CBAM
attention block [24]. The single-scalar estimation of the dis-
criminator Denc is provided by a MLP with a similar archi-
tecture to the CBAM module. We use transposed convolu-
tions for upsampling. Every other implementation detail in
the model (strides, bias, pooling) follow [18].

2.2. Model Training

Optimization We train the models using PyTorch [14]
and TorchVision [10]. We leverage Kornia for data aug-

mentation [15]. To accelerate the training process, we lever-
age mixed precision training and automatic gradient scal-
ing [12], and train the whole model natively on GPU. Op-
timization is done using Adam [9]. Following [19], we use
different learning rates for the generator lr = 0.001 and the
discriminator lr = 0.005 and a batch size of 10.We train the
models for 100 epochs, which takes 10 hours on an NVIDIA
RTX 3060 GPU.

Loss Function We use the following weights for the loss
function: λ∡ = 3, λspec = 1, λrough = 1, λadv =
0.2, λstyle = 0.25, λfreq = 0.2, λcons = 0.3. For the style
loss function, we use the AlexNet variant of LPIPS [27], as
it provides a lightweight style loss which has shown success
on texture transfer [16].

2.3. Artifact Detection

The thresholds for each material map and the kernel size
for the uniformity metric have been optimized given a set of
102 manually labeled textures: t1(Ms) = 0.01, t2(Ms) =
1.41, t3(Ms) = 1.33; t1(Mr) = 0.01, t2(Mr) = 0.99,
t3(Mr) = 3.12. The size of the box filter is sBox = 127.5.

2.4. Capture Details

We construct the training and testing dataset capturing
10×10 cm samples at 1000 PPI using an EPSON V850 Pro
on its defaults settings.

For the comparisons with previous work, we place the
fabric samples on a black surface. We use a Huawei Nova
5T smartphone, and capture the materials at two distances:
a close-up, capturing 4 × 4 cms at a distance to the sample
of 8 cms, and a full-size image, capturing capturing 8 × 8
cms, at a distance to the sample of 13 cms. We use ISO=50,
aperature of f

1.8 , and a focal length of 26mm for every im-
age. For the two distances, we capture the material using
ambient illumination, with exposure times of 1

10s for the
full size and of 1

8s for the close-up. We also capture the im-
ages using the smarphone flash lighting, with exposures of
1
40s and 1

50s for the full size and close-up, respectively.

2.5. Comparisons with Previous Work

We perform every comparison with previous work on a
RTX NVIDIA 2080, using the default configuration for ev-
ery method. However, for [20], we initialize the material
graph with a fabric material (fabric suit vintage)
provided in their repository, to better match our test data.
For [8], we use the fine-tuning configuration.



53.2%

40.4%

6.5%

Plain

27.4%

Twill

16.0%

Satin
5.2%

Jacquard 1.7%
Pile 1.5%

Crepe 1.2%

Jersey

11.2%

Interlock

7.8%

Fleece

7.2%

Rib

6.1%
Terry

3.6% Pique

3.1% Milano
1.5%

Leather
6.5%

Woven Knit Leather Fleece
Milano

Rib
Terry

Interlock
Jersey
Pique

Pile
Crepe
Twill
Plain

Jacquard
Satin

Leather

A
ve

ra
ge

 S
pe

cu
la

r

0.0 0.2 0.4 0.6 0.8 1.0

Leather
Satin

Jacquard
Crepe
Twill
Plain

Pile
Milano

Interlock
Rib

Fleece
Terry
Jersey
Pique

A
ve

ra
ge

 R
ou

gh
ne

ss

Figure 1. Visualization of our dataset. We show the percentages of materials in our training dataset, including more detailed subcategories.
On their right, we show the average specular and roughness for every category. As shown, there are some structures with distinct charac-
teristics: Satins are highly specular due to the particularities of their yarns, and Piles (eg corduroy) or Plain Weave (eg linen fabrics) are
much less glossy. We exploit this relationship between microgeometry and specularity for our estimations.



Ja
cq

ua
rd

(W
ov

en
)

Pl
ai

n
(W

ov
en

)

Sa
ti

n
(W

ov
en

)
Si

ng
le

 Je
rs

ey
 (K

ni
t)

R
ib

(K
ni

t)

T
w

ill
(W

ov
en

)

Pl
ai

n
(W

ov
en

)

C
re

pe
(W

ov
en

)

Pi
le

(W
ov

en
)

T
er

ry
(K

ni
t)

In
te

rl
oc

k
(K

ni
t)

M
ila

no
(K

ni
t)

Pi
qu

e 
(K

ni
t)

Fl
ee

ce
(K

ni
t)

Su
ed

e
(L

ea
th

er
)

Figure 2. Visualization of some Ground Truth SVBRDF of the different families in our test set. Textiles have very complex and varied
microstructures which play an important role on their appearance at different scales.



MobileViT

Input (D, 3)

ConvBlock(3, 32)

Linear Self-Attention

Output (D/2, 32)

MaxPool2D(2)

ConvBlock(32, 64)

Linear Self-Attention

Output (D/4, 64)

MaxPool2D(2)

ConvBlock(64, 128)

Linear Self-Attention

Output (D/8, 128)

MaxPool2D(2)

ConvBlock(128, 256)

Linear Self-Attention

Output (D/8, 256)

MaxPool2D(2)

Encoder

Concatenate

Concatenate

Concatenate

Concatenate

Upsample

ConvBlock(256, 128)

Output (D/8, 128)

Upsample

ConvBlock(128, 64)

Output (D/4, 64)

Upsample

ConvBlock(64, 32)

Output (D/2, 32)

Upsample

ConvBlock(64, 32)

Output (D, 32)

MLP(32, Cout)

Decoders

Roughness (D, Cout=1)

Specular (D, Cout=1)

Normals (D, Cout=3)

Input (Cin)

Conv2D(1x1, Cin, 3x Cin)

GroupNorm(16)

Conv2D(1x1, 3x Cin, Cout)

Output (Cout)

MLP(Cin, Cout)

Dropout

SiLU

Input (Cin)

Conv2D(3x3, Cin, Cout)

SiLU

GroupNorm(16)

Conv2D(3x3, Cout, Cout)

GroupNorm (16)

Conv2D(1x1, Cin, Cout)

GroupNorm (16)

+

Output (Cout)

ConvBlock(Cin, Cout)

Generator G(X) = M

Figure 3. A full diagram of our generator, including layer sizes and output dimensions for each layer. For Self-Attention, we leverage
Linear Attention [22], we use a MobileVIT transformer on the bottleneck [11], Group Normalization [26] and SiLU [4] non-linearities,
one decoder per output map and residual connections in every convolutional block. In red, we show the input/output dimensions (spa-
tial, channels) of each layer; in orange, we show attention modules; in blue, convolutional blocks and layers; in green, upsampling and
concatenating operations; in yellow, normalization layers; and in purple, regularizations and non-linearities.



Transformer

Input (D, 3)

ConvBlock(3, 32)

Linear Self-Attention

Output (D/2, 32)

MaxPool2D(2)

ConvBlock(32, 64)

Linear Self-Attention

Output (D/4, 64)

MaxPool2D(2)

ConvBlock(64, 128)

Linear Self-Attention

Output (D/8, 128)

MaxPool2D(2)

ConvBlock(128, 256)

Linear Self-Attention

Output (D/8, 256)

MaxPool2D(2)

Encoder

Concatenate

Concatenate

Concatenate

Concatenate

Upsample

ConvBlock(256, 128)

Output (D/8, 128)

Upsample

ConvBlock(128, 64)

Output (D/4, 64)

Upsample

ConvBlock(64, 32)

Output (D/2, 32)

Upsample

ConvBlock(64, 32)

Output (D, 32)

MLP(32, Cout)

Decoders

Alpha (D, Cout=1)

Roughness (D, Cout=1)

Specular (D, Cout=1)

Normals (D, Cout=3)

Figure 4. A full diagram of our U-Net residual discriminator, including layer sizes and output dimensions for each layer. We use a
CBAM [24] module on the bottleneck and Spectral Normalization [13] throughout the network and residual connections in every convo-
lutional block. In red, we show the input/output dimensions of each layer; in orange, we show attention modules; in blue, convolutional
blocks and layers; in green, upsampling and concatenating operations; in yellow, normalization layers; and in purple, non-linearities.



Input Image

Ground Truth

Baseline

Baseline +
PatchGAN

Baseline + UNet
Disc + ℒ𝑐𝑜𝑛𝑠

Full Loss

Multiple
Decoders

Attention

Transformer

Full Model

Figure 5. Further qualitative results of our ablation study. In order, normals, specular and roughness maps. The attention module removes
artifacts.



Input Image

Ground Truth

Baseline

Baseline +
PatchGAN

Baseline + UNet
Disc + ℒ𝑐𝑜𝑛𝑠

Full Loss

Multiple
Decoders

Attention

Transformer

Full Model

Figure 6. Further qualitative results of our ablation study. In order, normals, specular and roughness maps. The transformer module
enhances the normal map for the highly-structured rib fabric on the left.



Input Image

Ground Truth

Baseline

Baseline +
PatchGAN

Baseline + UNet
Disc + ℒ𝑐𝑜𝑛𝑠

Full Loss

Multiple
Decoders

Attention

Transformer

Full Model

Figure 7. Further qualitative results of our ablation study. In order, normals, specular and roughness maps. The full model achieves the
most accurate and sharper results.



Input Image

Ground Truth

Baseline

Baseline +
PatchGAN

Baseline + UNet
Disc + ℒ𝑐𝑜𝑛𝑠

Full Loss

Multiple
Decoders

Attention

Transformer

Full Model

Figure 8. Further qualitative results of our ablation study. In order, normals, specular and roughness maps. The transformer module and
the full model enhance the normal map for the highly-structured curdoroy fabric on the left.



Input Image

Ground Truth

Baseline

Baseline +
PatchGAN

Baseline + UNet
Disc + ℒ𝑐𝑜𝑛𝑠

Full Loss

Multiple
Decoders

Attention

Transformer

Full Model

Figure 9. Further qualitative results of our ablation study.In order, normals, specular and roughness maps.



Input Image

Ground Truth

Baseline

Baseline +
PatchGAN

Baseline + UNet
Disc + ℒ𝑐𝑜𝑛𝑠

Full Loss

Multiple
Decoders

Attention

Transformer

Full Model

Figure 10. Further qualitative results of our ablation study. In order, normals, specular and roughness maps. The transformer module and
the full model enhance the normal map for the highly-structured curdoroy fabric on the left and the printed knit fabric on the right.



Input Image

Ground Truth

Baseline

Baseline +
PatchGAN

Baseline + UNet
Disc + ℒ𝑐𝑜𝑛𝑠

Full Loss

Multiple
Decoders

Attention

Transformer

Full Model

Figure 11. Further qualitative results of our ablation study, for a suede leather on the left and a printed knit on the right. In order, normals,
specular and roughness maps.



Input Image Normals Specular Roughness

𝜎𝐵𝑅𝐷𝐹 𝜎∡ 𝜎𝑠𝑝𝑒𝑐 𝜎𝑟𝑜𝑢𝑔ℎ

Input Image Normals Specular Roughness

𝜎𝐵𝑅𝐷𝐹 𝜎∡ 𝜎𝑠𝑝𝑒𝑐 𝜎𝑟𝑜𝑢𝑔ℎ

Input Image Normals Specular Roughness

𝜎𝐵𝑅𝐷𝐹 𝜎∡ 𝜎𝑠𝑝𝑒𝑐 𝜎𝑟𝑜𝑢𝑔ℎ

Figure 12. Additional results of our uncertainty estimation method. On the top, we show a beige rib fabric with gray metallic yarns. While
there is a low uncertainty for the beige yarns, the metallic yarns are harder to digitize for our model (we do not support metalness in our
material model) and it shows a higher uncertainty on those yarns. In the middle, we show a leather material with a very strong structural
pattern. Our model shows very low confidence for this material. In the bottom, we show a tartan fabric. Interestingly, our model shows a
higher uncertainty on the blue yarns, which are less common than the other yarns in the material.



M
ax

 ℒ
𝐵
𝑅
𝐷
𝐹

M
in
ℒ
𝐵
𝑅
𝐷
𝐹

PredictionGT

M
ax

 ℒ
∡

M
in

 ℒ
∡

PredictionGT

M
ax

 ℒ
𝑆
𝑝
𝑒
𝑐

M
in

 ℒ
𝑆
𝑝
𝑒
𝑐

PredictionGT
M

ax
 ℒ
𝑅
𝑜
𝑢
𝑔
ℎ

M
in

 ℒ
𝑅
𝑜
𝑢
𝑔
ℎ

PredictionGT

Figure 13. Additional results of our uncertainty metric. On the top row, we show a plot between our proposed render uncertainty σBRDF

and the render error, which are highly correlated. We also show average error and uncertainty per family, as well as renders with the
lowest and highest errors, compared to the ground truth. Below, we show the same data for normals, specular and roughness errors and
uncertainties. There are no correlations between uncertainties and errors for these maps.



Model Trained
on 40% Data 

Active Learning, 
𝜎𝐵𝑅𝐷𝐹

Ground Truth

Model Trained
on 100% Data

Model Trained
on 40% Data, 

Randomly
Selected

Chiffon Shantung Goat Leather

Figure 14. Additional results of our active learning experiment. From top to bottom, we show the renders of ground truth SVBRDFs,
the model trained on the 100% of the training data, a model trained on 40% of the training data available, selected following an active
learning approach using our uncertainty σBRDF as guidance, and a model trained on 40% data, selected randomly. From left to right,
we show a very diffuse Chiffon fabric, a highly specular Shantung fabric and a Goat Leather material with very varied microgeometry. In
every case, our model trained on 40% of the data following an active learning approach obtains results which are very similar to a model
trained on 100% of the data. The model trained on randomly selected 40% data produces highly innacurate specularity and microgeometry
estimations.



Figure 15. Robustness of our model with respect to hue changes applied to the input images. On the left, we show the input images, on
their right, the three estimated maps (normals, specular, roughness).



Figure 16. Robustness of our model with respect to Gaussian blur applied to the input images. On the left, we show the input images, on
their right, the three estimated maps (normals, specular, roughness).



Figure 17. Robustness of our model with respect to rotations applied to the input images. On the left, we show the input images, on their
right, the three estimated maps (normals, specular, roughness)



PPI

1000

800

600

400

200

1000

800

600

400

200

Figure 18. Robustness of our model with respect to rescales changes applied to the input images, for different PPI. On the left, we show
the input images, on their right, the three estimated maps (normals, specular, roughness). For the downsampled images (< 1000 PPI), we
upsample them using bilinear interpolation to PPI to make the results comparible.



Input Image OursGenerative Modeling

Input Image OursDiff. Material Graphs

Input Image OursPhotometric Normals

Figure 19. Results of our method on datasets of previous work. On the top, we show the results of [8] on their own test set. Our method
provides sharper normals which better preserve the structure of the input images. On the middle, we show the results of our method on
synthetic rendered data from a material graph from [20]. Our method provides sharp normals for this synthetic image, which lies outside
the distribution of our dataset, composed exclusively of real images. On the bottom, we show an albedo and normals computed using
Photometric Stereo [25] for a captured BTF [23], for which our model also provides highly detailed results.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 1. Comparisons of our results with previous work on images captured under different conditions, for a tartan fabric: On the first
rows, images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient
lighting on different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their
metallic map instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 2. Comparisons of our results with previous work on images captured under different conditions for a curdoroy fabric: On the
first rows, images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient
lighting on different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their
metallic map instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 3. Comparisons of our results with previous work on images captured under different conditions for a plain weave fabric: On the
first rows, images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient
lighting on different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their
metallic map instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 4. Comparisons of our results with previous work on images captured under different conditions for a plain weave fabric: On the
first rows, images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient
lighting on different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their
metallic map instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 5. Comparisons of our results with previous work on images captured under different conditions for a single jersey fabric: On the
first rows, images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient
lighting on different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their
metallic map instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 6. Comparisons of our results with previous work on images captured under different conditions for a houndstooth fabric: On the
first rows, images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient
lighting on different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their
metallic map instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 7. Comparisons of our results with previous work on images captured under different conditions for a satin fabric: On the first rows,
images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient lighting on
different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their metallic map
instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 8. Comparisons of our results with previous work on images captured under different conditions for a plaid fabric: On the first rows,
images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient lighting on
different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their metallic map
instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 9. Comparisons of our results with previous work on images captured under different conditions for a jacquard fabric: On the
first rows, images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient
lighting on different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their
metallic map instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 10. Comparisons of our results with previous work on images captured under different conditions for a single jersey fabric: On the
first rows, images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient
lighting on different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their
metallic map instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



Input Deep Inverse
Rendering [5]

Generative
Modeling [8]

Diff. Material
Graphs [20]

Adversarial
Estimation [28] Our Method

Table 11. Comparisons of our results with previous work on images captured under different conditions for a suede leather: On the first
rows, images were captured with a smartphone using the flash image. On the middle rows, using the same smartphone with ambient
lighting on different scales. On the final row, a scanner image. Note that for [20] we use a fabric material for initialization and use their
metallic map instead of specular, that we do not estimate albedos and that the material models are not necessarily comparible.



References
[1] Valentin Deschaintre, Miika Aittala, Frédo Durand, George

Drettakis, and Adrien Bousseau. Flexible svbrdf capture
with a multi-image deep network. In Computer Graphics
Forum, volume 38, pages 1–13. Wiley Online Library, 2019.
2

[2] Valentin Deschaintre, Yiming Lin, and Abhijeet Ghosh.
Deep polarization imaging for 3d shape and svbrdf acquisi-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 15567–15576,
2021. 2

[3] Foivos I Diakogiannis, François Waldner, Peter Caccetta,
and Chen Wu. Resunet-a: A deep learning framework for se-
mantic segmentation of remotely sensed data. ISPRS Journal
of Photogrammetry and Remote Sensing, 162:94–114, 2020.
2

[4] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-
weighted linear units for neural network function approxima-
tion in reinforcement learning. Neural Networks, 107:3–11,
2018. 2, 5

[5] Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and
Xin Tong. Deep inverse rendering for high-resolution svbrdf
estimation from an arbitrary number of images. ACM Trans-
actions on Graphics (ToG), 38(4):134:1–134:15, July 2019.
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

[6] Elena Garces, Carlos Rodriguez-Pardo, Dan Casas, and
Jorge Lopez-Moreno. A Survey on Intrinsic Images: Delv-
ing Deep into Lambert and Beyond. International Journal of
Computer Vision, 2022. 2

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016. 2

[8] Philipp Henzler, Valentin Deschaintre, Niloy J Mitra, and To-
bias Ritschel. Generative modelling of brdf textures from
flash images. ACM Transactions on Graphics (Proc. SIG-
GRAPH Asia), 40(6), 2021. 2, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[10] Sébastien Marcel and Yann Rodriguez. Torchvision the
machine-vision package of torch. In Proceedings of the 18th
ACM international conference on Multimedia, pages 1485–
1488, 2010. 2

[11] Sachin Mehta and Mohammad Rastegari. Mobilevit: light-
weight, general-purpose, and mobile-friendly vision trans-
former. arXiv preprint arXiv:2110.02178, 2021. 2, 5

[12] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory
Diamos, Erich Elsen, David Garcia, Boris Ginsburg, Michael
Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed
precision training. arXiv preprint arXiv:1710.03740, 2017.
2

[13] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and
Yuichi Yoshida. Spectral normalization for generative ad-
versarial networks. arXiv preprint arXiv:1802.05957, 2018.
2, 6

[14] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 2

[15] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee,
and Gary Bradski. Kornia: an open source differentiable
computer vision library for pytorch. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 3674–3683, 2020. 2

[16] Carlos Rodriguez-Pardo and Elena Garces. Neural
photometry-guided visual attribute transfer. IEEE Transac-
tions on Visualization and Computer Graphics, 2022. 2

[17] Carlos Rodriguez-Pardo and Elena Garces. Seamless-
GAN: Self-Supervised Synthesis of Tileable Texture Maps.
IEEE Transactions on Visualization and Computer Graph-
ics, 2022. 2

[18] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 234–241.
Springer, 2015. 2

[19] Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. A u-
net based discriminator for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8207–8216, 2020. 2

[20] Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli,
Tamy Boubekeur, Radomir Mech, and Wojciech Matusik.
Match: differentiable material graphs for procedural mate-
rial capture. ACM Transactions on Graphics (TOG), 2020.
2, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

[21] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way
to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929–1958, 2014. 2

[22] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020. 2, 5

[23] Michael Weinmann, Juergen Gall, and Reinhard Klein. Ma-
terial classification based on training data synthesized us-
ing a btf database. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 156–171. Springer,
2014. 21

[24] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 3–19, 2018. 2, 6

[25] Robert J Woodham. Photometric method for determining
surface orientation from multiple images. Optical engineer-
ing, 19(1):139–144, 1980. 21

[26] Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 3–19, 2018. 2, 5

[27] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 586–595, 2018. 2



[28] Xilong Zhou and Nima Khademi Kalantari. Adversarial
single-image svbrdf estimation with hybrid training. In Com-
puter Graphics Forum, volume 40, pages 315–325. Wiley
Online Library, 2021. 2, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32


	. Overview
	. Implementation Details
	. Model Design
	. Model Training
	. Artifact Detection
	. Capture Details
	. Comparisons with Previous Work


