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Active Learning

BRDF Evaluation and Uncertainty Quantification

Model OverviewSummary

Key Idea: Microgeometry as Reflectance Cue
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GAN tailored for material digitization.

Attention: ↑Accuracy and no artifacts.

One specialized decoder for each map:
Improved quality and accuracy

Multiple loss functions to maximize
quality and accuracy.

Comparisons with Previous Work
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Single Image High Resolution SVBRDF Estimation

Flatbed Scanners as Capture Device

Reflectance Estimation Using Microgeometry

Uncertainty Quantification in Material Capture

Input Plausible Estimations

High
Uncertainty

Low
Uncertainty

Uncertainty sampling to
actively selecting which
samples to label.

With active learning, we
reduce the need of training
data by factors of >2.

Capture with Flatbed Scanners

          

• Scalable digitization at very high resolutions.
• Some scanners provide diffuse-like illumination

which resembles albedos.

SVBRDF 

X: Albedo (Input)

Burley. Physically-based
shading at Disney (2012)

M (G(X)): Normals, Roughness, Specular
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Frequency loss [5] compares the
Fourier expectrum of 𝑀 and 𝑀𝐺𝑇

U-Net Discriminator: Large
improvements compared to baselines.

BRDF Estimation Error ℒ𝐵𝑅𝐷𝐹

Constant grayscale albedo K to isolate the impact of the accuracy of 𝑀

Perceptually Motivated: Specular Peak attenuation, Cosine Weighting

Average distance between renders generated at a set of light (l) and cameras (v) positions

BRDF Estimation Uncertainty 𝜎𝐵𝑅𝐷𝐹

𝜎𝐵𝑅𝐷𝐹

Variance across renders generated at a set of light (l) and cameras (v) positions

We can efficiently measure uncertainty without dedicated training or model design. 

We sample a set (U) of estimations using Monte Carlo Dropout on the generator MLPs.

Single image material 
estimation is an ill-posed

problem

We introduce the first
uncertainty quantification

method for material capture

Style loss [6] compares 𝑀 and
𝑀𝐺𝑇 perceptually, using LPIPS.
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